scholarly journals Can Trichoderma-Based Biostimulants Optimize N Use Efficiency and Stimulate Growth of Leafy Vegetables in Greenhouse Intensive Cropping Systems?

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 121 ◽  
Author(s):  
Donato Visconti ◽  
Nunzio Fiorentino ◽  
Eugenio Cozzolino ◽  
Sheridan Lois Woo ◽  
Massimo Fagnano ◽  
...  

The present study addresses the effects of Trichoderma-based biostimulants and nitrogen (N) fertilization levels on agronomic performance and functional quality of two important greenhouse leafy vegetables: lettuce and rocket. A factorial analysis of the relative effects of Trichoderma-based biostimulants (Trichoderma harzianum strain T22 and Trichoderma virens strain GV41) and N fertilization levels (sub-optimal, optimal, and supra-optimal) was carried out to evaluate crop productive behavior (marketable and unmarketable yields, leaf dry matter content, and biomass production), nitrogen nutrition (N uptake, apparent N recovery, and nitrogen use efficiency (NUE)) as well as phytochemical qualitative components (antioxidant activity and total polyphenols). The soil plant analysis development (SPAD) index in both leafy vegetables and leaf colorimetry only in rocket were mainly affected by N fertilization levels but not by Trichoderma-based biostimulants. The contribution of native mineral N was 60 and 100 kg N ha−1 of the total uptake in lettuce and rocket, respectively, and N surpluses were observed in both crops, even under optimal fertilization conditions. Trichoderma virens GV41-based biostimulant increased lettuce marketable yield and biomass production, both under optimal and sub-optimal fertilization. In addition, the same treatment increased NUE up to 116% under recommended N fertilization, that was also associated to an increase in phenol content and antioxidant activity. Rocket showed a clear effect of the Trichoderma virens GV41 treatment, only in absence of fertilization, demonstrating an increase in marketable yield and N uptake. Thus, the inoculation of rocket with this Trichoderma biostimulant can be considered as a useful management tool in leafy vegetable cropping systems for the efficient use of residual fertilizers from previous crops, enhancing NUE within the crop rotations. Nevertheless, the application of microbial biostimulant treatments requires good monitoring of soil N fertility in order to avoid an overexploitation of soil N supplying potential.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 278 ◽  
Author(s):  
Ida Di Mola ◽  
Eugenio Cozzolino ◽  
Lucia Ottaiano ◽  
Sabrina Nocerino ◽  
Youssef Rouphael ◽  
...  

An optimized nitrogen (N) fertilization may have a positive effect on leafy vegetables by increasing growth, yield and nutrient content of plants. Nevertheless, crop performance must be coupled with an increase in Nitrogen Use Efficiency (NUE) in order to limit external N inputs and to avoid N surpluses associated with environmental and health problems. The aim of the current study was to assess the effects of a legume-derived plant hydrolysates (LDPH; Trainer®) and N fertilization levels (0, 2.25 and 4.5 g N m−2 for spinach and 0, 2.5 and 5.0 g N m−2 for lamb’s lettuce; N0%, N50%, N100%, respectively) on agronomical, biochemical, qualitative responses and NUE of these two important greenhouse leafy vegetables. Spinach and lamb’s lettuce were sprayed four times during the growing period (at a concentration of 4 mL L−1 of LDPH). In baby spinach, the LDPH application elicited a significant increase at the three levels of N fertilization: +16.8%, +14.2%, and 39.4% at 0, 2.25 and 4.5 g N m−2, respectively. Interestingly, in lamb’s lettuce, the N50% plants treated with LDPH reached similar values of marketable yield in comparison to treated and non-treated plants under N100% conditions. The presumed mechanism involved in the enhancement of yield response in the two leafy greens could be associated to a better activity of the photosystem II (higher SPAD index), biochemical (higher content of chlorophyll a, b and total) and leaf nitrate status. The foliar application of LDPH produced a major fortification in lipophilic and hydrophilic antioxidant activities (+11.6 and 6.3% for spinach and lamb’s lettuce, respectively). The biostimulant application also improved N-use efficiency and N-uptake efficiency compared to untreated plants: +17.8% and +18.8%, and +50% and +73.3%, for spinach and lamb’s lettuce, respectively.


2007 ◽  
Vol 87 (3) ◽  
pp. 565-569 ◽  
Author(s):  
Laura L Van

The effects of increasing nitrogen (N) fertilization on N use efficiency (NUE) and yield of green bell pepper were assessed in five field experiments over 2004 and 2005. These data were used to evaluate and contrast conclusions drawn from among 12 different NUE indices. In two diferent years (i.e., cool/wet vs. warm/dry), marketable yield response to N application was either positive or no response was observed. Total percent N in the fruit and shoot was lower in non-fertilized plants compared with plants grown in plots that received 70 or 210 kg N ha-1. There were considerable differences among locations in soil mineral N, yield, NUE, and plant N uptake and removal. For all eight fertilizer- and soil-based NUE indices assessed, NUE decreased as N application increased. However, for plant-based NUE indices, there was no difference in NUE values between N treatments. Thus, the interpretation and applicability of NUE depends on the goals of the research and the index used. Key words: Nutrient use efficiency, green bell peppers, harvest index, nitrogen, fertilizer, vegetable


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


1986 ◽  
Vol 34 (1) ◽  
pp. 37-47
Author(s):  
J.H.J. Spiertz ◽  
L. Sibma

The N yield and the N use efficiency were studied in a 3-year experiment with various cropping systems of Lolium perenne, Medicago sativa and maize. N yields of L. perenne and maize were about 450 and 200 kg/ha, resp. N yields of M. sativa ranged from about 400 to 600 kg/ha depending on crop age and weather conditions. N fixation rates of M. sativa were assessed in 1982 and ranged from 107 to 507 kg/ha for high (450 kg N/ha) and no N fertilization, resp. The after-effects of 1-, 2- and 3-year crops of L. perenne, M. sativa and maize on the DM and N yields of a test crop of maize were measured. Depending on the age of the preceding L. perenne crop, annually supplied with 450 kg N/ha, the N after-effects ranged from 120 to 175 kg/ha. The after-effect of a previous cropping with M. sativa was independent of the N dressing and ranged from 140 to 175 kg/ha. For comparison, the after-effect of a preceding maize crop ranged from 90 to 110 kg/ha. Mineral soil N reserves were determined in spring and autumn. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2009 ◽  
Vol 147 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Q. JING ◽  
H. VAN KEULEN ◽  
H. HENGSDIJK ◽  
W. CAO ◽  
P. S. BINDRABAN ◽  
...  

SUMMARYAbout 0·10 of the food supply in China is produced in rice–wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE.Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N supply.


2020 ◽  
Vol 56 (3) ◽  
pp. 355-370
Author(s):  
Julie Dusserre ◽  
Patrice Autfray ◽  
Miora Rakotoarivelo ◽  
Tatiana Rakotoson ◽  
Louis-Marie Raboin

AbstractIn response to the extensive development of upland rice on the hillsides of the Malagasy highlands, alternative cropping systems have been designed based on conservation agriculture (CA). As the promotion of CA in smallholder farming systems is still the subject of debate, its potential benefits for smallholder farmers require further assessment. In the context of resource-poor farmers and low-input production systems, nitrogen (N) is a major limiting nutrient. The effects of contrasted cropping systems have been studied on upland rice yield and N uptake in rainfed conditions: conventional tillage (CT) and CA with a mulch of maize or a legume (Stylosanthes or velvet bean). Decision Support Systems for Agrotechnology Transfer (DSSAT) crop growth model was used to quantify the soil N balance according to the season and the cropping system. The lowest yields were obtained in CA with a mulch of maize and were also associated with the lowest crop N uptake. Upland rice yields were higher or equivalent under CA with a legume mulch than under CT cropping systems. The supply of N was considerably higher in CA with a legume mulch than in CT, but due to higher leaching and immobilization in CA, the final contribution of N from the mulch to the crop was reduced although not negligible. DSSAT has been shown to be sufficiently robust and flexible to simulate the soil N balance in contrasting cropping systems. The challenge is now to evaluate the model in less contrasted experimental conditions in order to validate its use for N uptake and yield prediction in support to the optimization and design of new cropping systems.


2001 ◽  
Vol 1 ◽  
pp. 407-414 ◽  
Author(s):  
Scott X. Chang ◽  
Daniel J. Robison

Screening and selecting tree genotypes that are responsive to N additions and that have high nutrient use efficiencies can provide better genetic material for short-rotation plantation establishment. A pot experiment was conducted to test the hypotheses that (1) sweetgum (Liquidambar styraciflua L.) families have different patterns in biomass production and allocation, N uptake, and N use efficiency (NUE), because of their differences in growth strategies, and (2) sweetgum families that are more responsive to N additions will also have greater nutrient use efficiencies. Seedlings from two half-sib families (F10022 and F10023) that were known to have contrasting responses to fertility and other stress treatments were used for an experiment with two levels of N (0 vs. 100 kg N/ha equivalent) and two levels of P (0 vs. 50 kg P/ha equivalent) in a split-plot design. Sweetgum seedlings responded to N and P treatments rapidly, with increases in both size and biomass production, and those responses were greater with F10023 than with F10022. Growth response to N application was particularly strong. N and P application increased the proportional allocation of biomass to leaves. Under increased N supply, P application increased foliar N concentration and content, as well as total N uptake by the seedlings. However, NUE was decreased by N addition and was higher in F10023 than in F10022 when P was not limiting. A better understanding of genotype by fertility interactions is important in selecting genotypes for specific site conditions and for optimizing nutrient use in forestry production.


1995 ◽  
Vol 87 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Karl Guillard ◽  
Gary F. Griffin ◽  
Derek W. Allinson ◽  
M. Moosa Rafey ◽  
William R. Yamartino ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 941
Author(s):  
Roxana Vidican ◽  
Anamaria Mălinaș ◽  
Ioan Rotar ◽  
Rozalia Kadar ◽  
Valeria Deac ◽  
...  

Nitrogen fertilization is indispensable in increasing wheat crop productivity but, in order to achieve maximum profitable production and minimum negative environmental impact, improving nitrogen use efficiency (NUE) should be considered. The aim of this study was to evaluate the nitrogen use efficiency (NUE) in a long-term wheat–maize–soybean rotation system with the final purpose of increasing the overall performance of the wheat cropping system. Research was undertaken at the Agricultural Research Development Station Turda (ARDS Turda), located in Western Transylvania Plain, Romania. The experimental field was carried out at a fixed place during seven wheat vegetation seasons. The plant material consisted of a wheat variety created by the ARDS Turda (Andrada), one variety of maize (Turda 332) and one variety of soybean (Felix). The experiment covered two planting patterns: wheat after maize and wheat after soybean and five levels of nitrogen fertilization (control-unfertilized, fertilization with 0—control plot, 30, 60, 90 and 120 kg N ha−1 y−1). The following indices were assessed: NUE (nitrogen use efficiency), N uptake and PFP (partial factor productivity). The results of the present study suggest that reduced N-fertilization doses could improve N uptake and utilization for both planting patterns.


Sign in / Sign up

Export Citation Format

Share Document