scholarly journals Adaptation to Early-Season Soil Waterlogging Using Different Nitrogen Fertilizer Practices and Corn Hybrids

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 378 ◽  
Author(s):  
Gurpreet Kaur ◽  
Kelly A. Nelson ◽  
Peter P. Motavalli ◽  
Gurbir Singh

Excessive rainfall occurring in the early spring season in the Midwestern United States result in waterlogged soils contributing to corn production losses. The objective of our study is to evaluate the impact of soil waterlogging [non-waterlogged or waterlogged for 7 days when corn was at V3 growth stage (corn plant having three fully developed leaves with collar visible)], different pre-plant nitrogen (N) fertilizer sources and post-waterlogging rescue N fertilizer on grain and silage yield of two commercially available corn hybrids with different flood tolerance. Pre-plant N fertilizer was applied at 168 kg N ha−1. Nitrogen sources were a non-treated control (CO), polymer coated urea (PCU), urea (NCU), and urea plus Instinct (NCU + NI). A post-waterlogging rescue N fertilizer was applied at V7 as 0 or 83 kg N ha−1 of urea plus N-(n-butyl) thiophosphoric triamide (NBPT) (NCU + UI). Waterlogging decreased grain and silage yields in different years; however, significant interactions were observed among treatments. Rescue N applications increased grain yields by 6–46% in non-waterlogged treatments, but not in waterlogged treatments. The PCU and NCU + NI increased grain yields compared to the CO. Pre-plant N sources showed no significant differences in grain yield, probably due to existing environmental conditions or incorporation of fertilizer. The N source, application method, and timing for post-waterlogging rescue N application and flood-tolerant corn hybrids needs further investigation in poorly-drained claypan soils prone to waterlogging under a changing climate.

2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Thais Antolini Veçozzi ◽  
Rogério Oliveira de Sousa ◽  
Walkyria Bueno Scivittaro ◽  
Cristiano Weinert ◽  
Victor Raul Cieza Tarrillo

ABSTRACT: A study was conducted to evaluate the solubilization and nitrogen (N) use efficiency (NUE) of controlled release nitrogen fertilizers in irrigated rice, compared to urea. It was developed under semi-controlled conditions, including five treatments: Control, Splitted Urea (pre-sowing and topdressing), Pre-sowing urea, and Polymer Coated Urea (PCU) with 60-day and 90-day release. PCUs did not maintain high NH4 + and NO3 - levels in solution over a longer period than urea. NUE of PCUs was similar to uncoated urea, not increasing nutrient release in irrigated rice field.


2013 ◽  
Vol 93 (2) ◽  
pp. 151-160 ◽  
Author(s):  
R. E. Karamanos ◽  
F. C. Stevenson

Karamanos, R. E. and Stevenson, F. C. 2013. Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta. Can. J. Plant Sci. 93: 151–160. Four different N sources [ammonium nitrate (NIT), urea (UR), polymer-coated urea (PCU), and N-(n-butyl) thiophosphoric triamide-treated urea (AGR)] were applied to stands of pure meadow bromegrass (Bromus beibersteinii L.) or a 50:50 smooth bromegrass (Bromus inermis L.)–alfalfa (Medicago sativa L.) mixture in late fall and early spring at four N rates (0, 60, 80 and 100 kg N ha−1) over a 3-yr (2003–2005) period. The N treatments generally increased forage responses, but the response net revenue to N treatment was rarely positive and at times was negative, especially for PCU. On average, PCU resulted in lower yield and protein concentration, lesser N efficiency, and lesser profit relative to other forms of N. This difference was more pronounced in the spring and was less notable at Rycroft, the location with the bromegrass–alfalfa mixture. Also, greater N fertilizer rates increased the yield, protein concentration, total N uptake, and profit for all fertilizer forms. The exceptions to the preceding were N fertilizer rate did not affect forage responses for PCU and at the location with the brome-alfalfa mixture. Urea or AGR provided satisfactory agronomic alternatives to ammonium nitrate when applied in early spring at sufficient rates.


1990 ◽  
Vol 70 (1) ◽  
pp. 151-162 ◽  
Author(s):  
C. A. CAMPBELL ◽  
J. G. McLEOD ◽  
F. SELLES ◽  
F. B. DYCK ◽  
C. VERA ◽  
...  

Winter wheat (Triticum aestivum L.) production in Saskatchewan has increased in recent years due to the introduction of Norstar, a winter hardy variety, and due to the reduction in winter injury when the crop is seeded directly into standing stubble (stubbling-in). Large variations in the amount and distribution of seasonal precipitation in the Brown soil zone may prove detrimental to the adoption of this system. If implemented, fertilizer recommendations will need to be developed to fit this cropping system. A 4-yr study was conducted at Swift Current, Saskatchewan on an orthic Brown Chernozemic silt loam soil to determine the effect of rate, season of application, and placement of urea-N on grain yields and protein concentration of stubbled-in winter wheat. Plant density was unaffected by N. In 1984–1985 and 1986–1987 adequate weather conditions from seeding to early spring resulted in acceptable plant stands, but in 1985–1986 suboptimal winter temperatures and in 1987–1988 severe drought during fall and early spring reduced over-winter survival of wheat. Only 1 year provided better-than-average growing season weather conditions and thus good yields. Grain protein was < 11.5% (the critical lower level for milling) in two of the 4 years. In 1 year, a dry fall and winter coupled with a prolonged hot, dry early spring resulted in poor grain yields and very high protein concentrations (20–22%). Fertilizer-nitrogen, broadcast at 50 kg ha−1 at seeding, resulted in yields and grain protein concentrations similar to those when N was broadcast in April. Band placement of N was superior to broadcast application only in terms of grain protein concentration and N fertilizer recovery. There was no difference between banding N at 5 and 10 cm depth. In all years studied, application of N at 100 kg ha−1 was excessive for this system. It was concluded that producers should be cautious in attempting to grow stubbled-in winter wheat in the Brown soil zone.Key words: Yield, grain protein, N recovery, plant population, kernel weight


Author(s):  
Haibo An ◽  
Jen Owens ◽  
Brian Beres ◽  
Yuejin Li ◽  
Xiying Hao

AbstractOptimizing nitrogen fertilizer management can reduce nitrous oxide (N2O) emissions. This study tested if split applying enhanced efficiency fertilizers (EEFs) resulted in lower N2O emissions than applying equivalent rates of urea at planting. In semiarid southern Alberta, field trials were conducted during three years (planting to harvest) in rainfed winter wheat crops. Annual fertilizer rates ranged from 146 to 176 kg N ha−1. Fertilizer types were urea, and three EEFs (polymer-coated urea, urea with urease and nitrification inhibitors, and urea with a nitrification inhibitor). Each fertilizer type was applied three ways: 100% banded at planting, split applied 30% banded at planting and 70% broadcast in late fall, and split applied 30% banded at planting and 70% broadcast at Feekes growth stage 4 (GS4, post-tiller formation, wheat entering the greening up phase in the early spring). Nitrous oxide was measured using static chambers between sub-weekly and monthly from planting to harvest. Over three years, cumulative N2O emissions ranged from 0.16 to 1.32 kg N ha−1. This was equivalent to emissions factors between 0.009 and 0.688%. Cumulative N2O emissions and emissions factors did not differ between fertilizer types, but they were lower when fertilizer was split applied at GS4 compared to in late fall (P ≤ 0.10). Our study suggests that EEFs do not reduce N2O emissions from rainfed winter wheat crops, but a well-timed split application with a majority of fertilizer applied after winter can minimize N2O emissions.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 594
Author(s):  
Ricardo Gil-Ortiz ◽  
Miguel Ángel Naranjo ◽  
Antonio Ruiz-Navarro ◽  
Marcos Caballero-Molada ◽  
Sergio Atares ◽  
...  

Increasing nutrient use efficiency of fertilizers is one of the major challenges to improve crop yields and minimize environmental impacts. This work compared the efficacy of a new ecological polymer-coated urea fertilizer and a slow release urea-based traditional fertilizer. Reductions in the N doses of the polymer-coated fertilizer were tested. A comparative study was first carried out by measuring the different physiological and yield parameters at the micro-scale level, and later-on field experiments were performed. Grain yield in the field was significantly higher (20%) when applying the new controlled-release fertilizer than when using the traditional one at the same dose. A 20% reduction in N content in the new fertilizer gave similar physiological and yield responses compared to the traditional fertilizer. We conclude that this new fertilizer can be used in extensive cropping of maize, guaranteeing at least the same yields than traditional fertilizers, with a reduction on the impact on soil properties and nitrogen losses.


Soil Research ◽  
2019 ◽  
Vol 57 (4) ◽  
pp. 342 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Delaying the accumulation of soil nitrate from urea applied at sowing should mitigate nitrous oxide (N2O) emissions without compromising optimum crop production. This delay may be achieved chemically using a nitrification inhibitor such as 3,4 dimethylpyrazole phosphate (DMPP), or physically by coating urea with a degradable polymer (PCU). In five field experiments across three summers, the impact of DMPP-coated urea applied at sowing on soil mineral nitrogen (N), N2O emissions and yields of grain sorghum or sunflower grown on sub-tropical Vertosols was assessed. At two experiments, DMPP effects on plant N uptake, soil N movement and total N loss were determined with 15N. One experiment included PCU and several blends: urea+DMPP-urea; urea+PCU; urea+DMPP-urea+PCU. Averaged across all experiments, DMPP reduced cumulative N2O emitted by 92% (range: 65–123%) and N2O emission factor (EF: percent of applied N emitted) by 88%. There was no statistical difference in N2O emitted between the 0N control and DMPP-urea. PCU reduced N2O emitted by 27% and EF by 34%. The urea+DMPP-urea blend also nullified urea-induced N2O, but urea+PCU increased N2O emissions and decreased grain yield due to a mismatch between soil N availability and plant N demand. DMPP arrested 15N movement in soil and reduced total 15N loss from 35% to 15% at one of the two 15N experiments. Applying DMPP-urea at sowing is an effective N strategy that nullifies urea-induced N2O emissions, maintains crop yield, and retains N in the soil–plant system. Negative impacts of the PCU+urea blend highlight the influence of growing season conditions on fertiliser N release.


2016 ◽  
Vol 3 (1) ◽  
pp. 55-60
Author(s):  
Yu. Lavrynenko ◽  
R. Vozhegova ◽  
O. Hozh

The purpose of the research is to identify effi cient microfertilizers and growth stimulants considering biologi- cal features of new corn hybrids of different FAO groups under irrigation conditions in the South of Ukraine and trace their impact on grain productivity of the plants. The methods of the research are the fi eld method – to study the interaction of the research object with experimental factors of the natural environment, to register the yield and evaluate the biometrical indices; the laboratory method – to measure soil moisture, grain moisture content and grain quality indices; the statistical method – to evaluate the reliability of the obtained results; the calculation methods – for economic and energetic assessment of the growing techniques used. The results of the research. The paper defi nes the impact of microfertilizers and growth stimulants on the yield and grain quality of the corn hybrids of different maturity groups and on the economic effi ciency of growing them. The conclusions of the research. Under irrigation conditions of the Southern Steppe of Ukraine it is recommended that the following hybrids should be grown in dark-chestnut soils: early maturity DN Pyvykha, medium-early Skadovskyi, medium maturity Kakhovskyi and medium-late Arabat, using the growth stimulants – treating the seeds with Sezam-Nano and fertilizing with Grainactive at the stage of 7–8 leaves.


Sign in / Sign up

Export Citation Format

Share Document