scholarly journals Effects of Exogenous Spermidine on Root Metabolism of Cucumber Seedlings under Salt Stress by GC-MS

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 459 ◽  
Author(s):  
Bing Liu ◽  
Xujian Peng ◽  
Lingjuan Han ◽  
Leiping Hou ◽  
Bin Li

To investigate the effects of exogenous spermidine (Spd) on metabolism changes under salt stress in cucumber roots, a gas chromatography-mass spectrometry (GC-MS) was performed. The results showed that most of the 142 metabolites responded to salt stress or exogenous Spd treatment. Salt stress reduced carbon consumption, resulted in the transformation of glycolysis and the tricarboxylic acid (TCA) cycle to the pentose phosphate pathway (PPP), and meanwhile increased salicylic acid (SA) and ethylene synthesis, and, thus, inhibited the growth of seedlings. However, exogenous Spd further improved the utilization of carbon, the energy-saving pattern of amino acid accumulation, and the control of hydroxyl radicals. In conclusion, Spd could promote energy metabolism and inhibit SA and ethylene synthesis in favor of root growth that contributes to higher salt tolerance. This study provides insight that may facilitate a better understanding of the salt resistance by Spd in cucumber seedlings.

1997 ◽  
Vol 52 (3-4) ◽  
pp. 187-192 ◽  
Author(s):  
Yuko Fukushima ◽  
Hamako Sasamoto ◽  
Shigeyuki Baba ◽  
Hiroshi Ashihara

Abstract Respiration and related aspects of metabolism were investigated in the roots and leaves of 2-year-old trees of the mangrove plant, Avicennia marina in the presence of 100, 250 and 500 mᴍ NaCl. The rate of respiration of leaves increased with increasing concentrations of NaCl in the incubation medium, but respiration of roots was not similarly affected. In order to examine the relative rates of catabolism of glucose by the glycolysis-tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate pathway (PP pathway), we determined the rates of release of 14CO2 from [1-14C]glucose and from [ 6 -14C]glucose in segments of roots and leaves. The ratios of rates (C6/C1) in roots varied from 0.30 to 0.44, while ratios of 0.85 to 0.99 were obtained when leaves were incubated in the presence of various concentrations of NaCl. It appeared that the PP pathway was more involved in sugar catabolism in the roots than in the leaves of A. marina. Uniformaly 14C-labelled sucrose, incubated with segments of roots and leaves for 18 h, was converted to CO2, amino acids (mainly glutamine), organic acids (mainly malic acid), sugars and ethanol-insoluble macromolecules. The incorporation of radioactivity into most of these components was not significantly affected by NaCl. However, in leaves (but not in roots) the release of 14CO2 from [ U -14C]sucrose was en­ hanced by NaCl at 250 mᴍ and 500 mᴍ, while the rate of incorporation of radioactivity into macromolecules was reduced by high concentrations of NaCl. Incorporation of radioactivity from [ U -14C]sucrose into malic acid was enhanced in both roots and leaves by an increase in the concentration of NaCl from 100 mᴍ to 500 mᴍ (this concentrations is similar to that in sea water). Independent of the concentration of NaCl, more than half of the radioactivity in the neutral fraction from leaves was incorporated into an unidentified sugar, while in the same fraction from roots, the radioactivity was associated with glucose, fructose and sucrose. On the basis of these results, a discussion is presented of the characteristics of catabolism of sugars in A. marina in relation to salt resistance.


2013 ◽  
Vol 138 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Bin Li ◽  
Ting Sang ◽  
Lizhong He ◽  
Jin Sun ◽  
Juan Li ◽  
...  

To examine whether 1 mm of spermidine (Spd) modifies plant ethylene production in response to short-term salt stress, cucumber (Cucumis sativus) seedlings were grown in nutrient solution with or without 75 mm NaCl stress for 3 days, and the leaves were sprayed with 1 mm Spd or water (control). We investigate the effects of the treatments on ethylene production, 1-aminocyclopropane-1-carboxylate (ACC) content, 1-(malonylamino) cycolpvopane-1-carboxylic acid (MACC) content, activities of 1-aminocyclopropane-1-carboxylate synthase (ACS), and 1-aminocyclopropane-1-carboxylate oxidase (ACO) and gene expression of acs2, aco1, and aco2 in the cucumber leaves. The results indicate that ethylene production was increased significantly under salt stress as did ACC and MACC content, the activities of ACS and ACO, and the transcriptional level of acs2, whereas the gene expression of aco1 and aco2 was somewhat decreased. However, exogenous Spd treatment depressed the content of ACC and MACC, ACS activity, and the level of acs2 transcripts in the leaves of salt-stressed cucumber. Although the activity of ACO and gene expressions of aco1 and aco2 increased by Spd, ethylene emission was inhibited. Our results suggest that application of exogenous Spd could reverse salinity-induced ethylene production by inhibiting the transcription and activity of ACS under salt stress. We conclude that exogenous Spd could modify the biosynthesis of ethylene to enhance the tolerance of cucumber seedlings to salt stress.


2010 ◽  
Vol 61 (10) ◽  
pp. 2719-2733 ◽  
Author(s):  
M. Quinet ◽  
A. Ndayiragije ◽  
I. Lefevre ◽  
B. Lambillotte ◽  
C. C. Dupont-Gillain ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 12848
Author(s):  
Jie Jin ◽  
Jianfeng Wang ◽  
Keke Li ◽  
Shengwang Wang ◽  
Juan Qin ◽  
...  

Salinity stress is a threat to yield in many crops, including soybean (Glycine max L.). In this study, three soybean cultivars (JD19, LH3, and LD2) with different salt resistance were used to analyze salt tolerance mechanisms using physiology, transcriptomic, metabolomic, and bioinformatic methods. Physiological studies showed that salt-tolerant cultivars JD19 and LH3 had less root growth inhibition, higher antioxidant enzyme activities, lower ROS accumulation, and lower Na+ and Cl- contents than salt-susceptible cultivar LD2 under 100 mM NaCl treatment. Comparative transcriptome analysis showed that compared with LD2, salt stress increased the expression of antioxidant metabolism, stress response metabolism, glycine, serine and threonine metabolism, auxin response protein, transcription, and translation-related genes in JD19 and LH3. The comparison of metabolite profiles indicated that amino acid metabolism and the TCA cycle were important metabolic pathways of soybean in response to salt stress. In the further validation analysis of the above two pathways, it was found that compared with LD2, JD19, and LH3 had higher nitrogen absorption and assimilation rate, more amino acid accumulation, and faster TCA cycle activity under salt stress, which helped them better adapt to salt stress. Taken together, this study provides valuable information for better understanding the molecular mechanism underlying salt tolerance of soybean and also proposes new ideas and methods for cultivating stress-tolerant soybean.


2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


1998 ◽  
Vol 274 (5) ◽  
pp. E843-E851 ◽  
Author(s):  
Wai-Nang Paul Lee ◽  
Laszlo G. Boros ◽  
Joaquim Puigjaner ◽  
Sara Bassilian ◽  
Shu Lim ◽  
...  

We present a single-tracer method for the study of the pentose phosphate pathway (PPP) using [1,2-13C2]glucose and mass isotopomer analysis. The metabolism of [1,2-13C2]glucose by the glucose-6-phosphate dehydrogenase, transketolase (TK), and transaldolase (TA) reactions results in unique pentose and lactate isotopomers with either one or two13C substitutions. The distribution of these isotopomers was used to estimate parameters of the PPP using the model of Katz and Rognstad (J. Katz and R. Rognstad. Biochemistry 6: 2227–2247, 1967). Mass and position isotopomers of ribose, and lactate and palmitate (products from triose phosphate) from human hepatoma cells (Hep G2) incubated with 30% enriched [1,2-13C2]glucose were determined using gas chromatography-mass spectrometry. After 24–72 h incubation, 1.9% of lactate molecules in the medium contained one 13C substitution ( m 1) and 10% contained two 13C substitutions ( m 2). A similar m 1-to- m 2ratio was found in palmitate as expected. Pentose cycle (PC) activity determined from incubation with [1,2-13C2]glucose was 5.73 ± 0.52% of the glucose flux, which was identical to the value of PC (5.55 ± 0.73%) determined by separate incubations with [1-13C] and [6-13C]glucose.13C was found to be distributed in four ribose isotopomers ([1-13C]-, [5-13C]-, [1,2-13C2]-, and [4,5-13C2]ribose). The observed ribose isotopomer distribution was best matched with that provided from simulation by substituting 0.032 for TK and 0.85 for TA activity relative to glucose uptake into the model of Katz and Rognstad. The use of [1,2-13C2]glucose not only permits the determination of PC but also allows estimation of relative rates through the TK and TA reactions.


1997 ◽  
Vol 272 (6) ◽  
pp. C2049-C2062 ◽  
Author(s):  
J. A. Vogt ◽  
D. M. Yarmush ◽  
Y. M. Yu ◽  
C. Zupke ◽  
A. J. Fischman ◽  
...  

Infusion of 13C-labeled lactate into rabbits and the subsequent measurement of glutamate isotopomers by 13C nuclear magnetic resonance (NMR) spectroscopy enables one to calculate relative flow rates associated with the tricarboxylic acid (TCA) cycle, albeit with a lower precision than one would obtain using a perfused organ. Two factors contribute to the lower precision in the determination of relative flow rates for the in vivo system: 1) a poorly defined pyruvate input and 2) low levels of 13C-enriched oxaloacetate and acetyl-CoA isotopomers, which give rise to weaker glutamate isotopomer NMR signals. To help overcome these limitations, we introduce a procedure to 1) include experimental data from gas chromatography-mass spectrometry (GC-MS) and 2) account for the uncertainty in the labeling of the input to pyruvate by creating the labeling as a measurement that is subject to measurement error. The effects of the uncertainties in the input labeling, NMR data, and MS data are evaluated via a Monte Carlo method. The change in the precision of the relative fluxes for the cases of high/low NMR and high/low MS precision is given. An uncertainty in the lactate measurements of up to 10% does not add significantly to the imprecision of the relative flow rates.


Sign in / Sign up

Export Citation Format

Share Document