scholarly journals Animal Slurry Sanitization through pH Adjustment: Process Optimization and Impact on Slurry Characteristics

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 517
Author(s):  
Joana Rodrigues ◽  
Paula Alvarenga ◽  
Ana Carla Silva ◽  
Luísa Brito ◽  
Jorge Tavares ◽  
...  

Sanitization by pH adjustment of dairy and pig slurries was evaluated for potential use as organic fertilizer in horticulture. This requires absence of Salmonella in 25 g of slurry and less than 1000 Escherichi coli colony-forming unit per gram of fresh slurry (Regulation (EU) 2019/1009). Additives used in the alkalinization and acidification treatments, included hydroxide-salts and nitrogen-based reactants to increase slurry pH to a basic range (9.0–11.0) and concentrated H2SO4 to decrease slurry pH to an acidic range (5.5–3.5). While low-cost urea was unable to increase the slurry pH above 9.5, ammonia efficiently increased slurry pH to the targeted values (but enhanced the emissions risk), whereas the effect of Ca(OH)2 was hindered by its low solubility. Slurry sanitization by alkalinization was achieved at a pH of 9.5 for both slurries, using similar quantities of KOH or NaOH. KOH was selected for further tests since it provides a plant macronutrient. Acidification with concentrated H2SO4 was able to achieve sanitization by lowering the pH to 5.0. After a 60-d storage experiment with raw and treated slurries, the level of E. coli was below the sanitization limit for all samples. Storage had no significant impact on slurry characteristics, except for ammonium-nitrogen content. Acidification treatment minimized ammonia losses.

1971 ◽  
Vol 10 (03) ◽  
pp. 245-251 ◽  
Author(s):  
P. Richards ◽  
W. C. Eckelman

SummaryThe full potential use of technetium has not been achieved despite its ideal physical properties, dosimetry and availability because of the complex preparations required for 99mTc radiopharmaceuticals. One of the goals of our work is to develop techniques for the preparation of high-purity 99mTc compounds which can be easily prepared, ideally by adding pertechnetate to a prepared solution.The use of stannous ion as reducing agent for technetium makes it possible to obtain such one-step, high-purity products. All non-radioactive components can be premixed in a single vial before addition of the radioactive pertechnetate. No final pH adjustment, further chemical manipulation or purification is required.Procedures for two instantly labeled compounds have been developed to date: 99mTc DTPA and 99mTc HSA. The 99mTc DTPA is prepared by adding pertechnetate to a previously prepared solution of stannous ion and CaNa3 DTPA which has been stored at pH 4. The 99mTc HSA is prepared by adding pertechnetate to a solution of stannous ion and HSA. The parametric variations and analytical techniques involved in formulating these procedures are described. It appears that development of kits for other biologically interesting compounds may be possible using similar procedures.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 194
Author(s):  
Yung-Chih Wang ◽  
Yao-Hung Tsai ◽  
Ching-Fen Shen ◽  
Ming-Yao He ◽  
Yi-Chen Fu ◽  
...  

Escherichia coli has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of E. coli. This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of E. coli. In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect E. coli with a detection limit of 105 colony-forming units (colony-forming unit [CFU])/mL.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3774
Author(s):  
Pavlos Topalidis ◽  
Cristina Florea ◽  
Esther-Sevil Eigl ◽  
Anton Kurapov ◽  
Carlos Alberto Beltran Leon ◽  
...  

The purpose of the present study was to evaluate the performance of a low-cost commercial smartwatch, the Xiaomi Mi Band (MB), in extracting physical activity and sleep-related measures and show its potential use in addressing questions that require large-scale real-time data and/or intercultural data including low-income countries. We evaluated physical activity and sleep-related measures and discussed the potential application of such devices for large-scale step and sleep data acquisition. To that end, we conducted two separate studies. In Study 1, we evaluated the performance of MB by comparing it to the GT3X (ActiGraph, wGT3X-BT), a scientific actigraph used in research, as well as subjective sleep reports. In Study 2, we distributed the MB across four countries (Austria, Germany, Cuba, and Ukraine) and investigated physical activity and sleep among these countries. The results of Study 1 indicated that MB step counts correlated highly with the scientific GT3X device, but did display biases. In addition, the MB-derived wake-up and total-sleep-times showed high agreement with subjective reports, but partly deviated from GT3X predictions. Study 2 revealed similar MB step counts across countries, but significant later wake-up and bedtimes for Ukraine than the other countries. We hope that our studies will stimulate future large-scale sensor-based physical activity and sleep research studies, including various cultures.


2019 ◽  
Vol 276 ◽  
pp. 01031 ◽  
Author(s):  
Partogi H Simatupang ◽  
Petrus Lubalu ◽  
Herry L Sianturi ◽  
Wilhelmus Bunganaen

Kupang City in Timor Island of Indonesia, as a semiarid area, has abundant solar energy sources. Based on climatology data of Kupang City in 2013-2015, the minimum and maximum average temperatures in Kupang City range from 19.3-34.8oC. Besides, dry seasons last for about 8 months (April-November). This abundance of solar energy is a potential energy resource for the manufacturing of environmentally friendly ferrogeopolymer elements. Based on previous research, the production of geopolymer material can be done optimally with dry curing treatment at 60-80oC for less than 48 hours. Therefore, in this paper, a low-cost, energy efficient oven operated by a solar energy collector was developed. This paper describes a feasibility study of the use of solar energy for curing ferro-geopolymer elements. The ferro-geopolymer elements made were beams with length 600 mm, width 100 mm and height 100 mm. Wire meshes with 6x6mm of opening were used in 5 layers. The solar energy collector system used as an oven was a zinc coated drum which was painted black outwardly and was covered by a glass plate. Using this oven, it was possible to increase the ambient temperature by 1.62 to 2,37 times. Furthermore, this oven can also increase the flexure strength of ferrogeopolymer elements about ± 25.34%. This paper shows good potential use of solar energy in the manufacturing of ferro-geopolymer elements in the semiarid region.


2020 ◽  
Vol 38 (11) ◽  
pp. 1222-1230
Author(s):  
Ricardo Herbé Cruz-Estrada ◽  
Javier Guillén-Mallette ◽  
Carlos Vidal Cupul-Manzano ◽  
Josué Iván Balam-Hernández

This work presents a study on the use of wood and plastic wastes generated in abundance in Merida, Mexico, to help to reduce them in order to mitigate environmental deterioration. The use of these wastes is proposed to obtain a low-cost building material. So, the escalation process (i.e., extrusion) at the pilot level to obtain a prototype of a wood–plastic composite (WPC) corrugated sheet to evaluate the technical feasibility to make a low-cost product is reported. A corrugated sheet with recycled high-density polyethylene (R-HDPE) was produced. The R-HDPE was collected from Merida’s Separation Plant. The wood came from the trimmings of different varieties of trees and shrubs that are periodically pruned. WPC sheets with virgin HDPE were prepared to assess its effect on the materials’ mechanical performance. The wood/HDPE weight ratio was 40/60. The performance of the WPC sheets was compared with that of commercial products with similar characteristics, namely acrylic and polyester sheets reinforced with fibreglass, and black asphalt-saturated cardboard sheets. Thus, the effect of natural weathering on the maximum tensile tearing force and on the maximum flexural load of the different types of sheets was evaluated. Although the mechanical performance of the WPC sheets was lower than that of the acrylic and polyacrylic sheets, their performance was much better than that of the cheap black asphalt-saturated cardboard sheets. So, they are a good option to be used as low-cost temporary roofing.


2017 ◽  
Vol 20 (K3) ◽  
pp. 25-30
Author(s):  
Nguyet Thi Nhu Nguyen ◽  
Bien Khac Nguyen ◽  
Huyen Thi Bich Trinh ◽  
Hanh Vu Bich Dang

This paper presents the possibillity of using native microoganisms from the brewery’s post-treatment sludge in order to create fertilizers by the windrow composting. The result showed that there are 3 representive useful microoganisms in the following: C1, C4 and C6. At the same time, the change in the composition of supplementary fiber into 4 treatment has resulted in the following : the everage C/N ratio of treatment are from 20 to 29, the average pH of the ratios is 7,82; total nitrogen fixation average is 2108; the highest is 5108; the smallest is 8107, microoganisms which are capable of decomposing cellulose average is 7 x 106; the highest is 9106, the lowest is 5106. Total Salmonella and E. coli are 0; the after-testing products meet the standard in the Viet Nam Bank for Agriculture and Rural Development.


2019 ◽  
Author(s):  
Michael P. Meers ◽  
Terri Bryson ◽  
Steven Henikoff

AbstractWe previously described a novel alternative to Chromatin Immunoprecipitation, Cleavage Under Targets & Release Using Nuclease (CUT&RUN), in which unfixed permeabilized cells are incubated with antibody, followed by binding of a Protein A-Micrococcal Nuclease (pA/MNase) fusion protein (1). Upon activation of tethered MNase, the bound complex is excised and released into the supernatant for DNA extraction and sequencing. Here we introduce four enhancements to CUT&RUN: 1) a hybrid Protein A-Protein G-MNase construct that expands antibody compatibility and simplifies purification; 2) a modified digestion protocol that inhibits premature release of the nuclease-bound complex; 3) a calibration strategy based on carry-over of E. coli DNA introduced with the fusion protein; and 4) a novel peak-calling strategy customized for the low-background profiles obtained using CUT&RUN. These new features, coupled with the previously described low-cost, high efficiency, high reproducibility and high-throughput capability of CUT&RUN make it the method of choice for routine epigenomic profiling.


Author(s):  
Rajani Ghaju Shrestha ◽  
Daisuke Inoue ◽  
Michihiko Ike

Abstract A constructed wetland (CW) is a low-cost, eco-friendly, easy-to-maintain, and widely applicable technology for treating various pollutants in the waste landfill leachate. This study determined the effects of the selection and compiling strategy of substrates used in CWs on the treatment performance of a synthetic leachate containing bisphenol A (BPA) as a representative recalcitrant pollutant. We operated five types of lab-scale vertical-flow CWs using only gravel (CW1), a sandwich of gravel with activated carbon (CW2) or brick crumbs (CW3), and two-stage hybrid CWs using gravel in one column and activated carbon (CW4) or brick crumbs (CW5) in another to treat synthetic leachate containing BPA in a 7-d sequential batch mode for 5 weeks. CWs using activated carbon (CW2 and CW4) effectively removed ammonium nitrogen (NH4-N) (99–100%), chemical oxygen demand (COD) (93–100%), and BPA (100%), indicating that the high adsorption capacity of activated carbon was the main mechanism involved in their removal. CW5 also exhibited higher pollutant removal efficiencies (NH4-N: 94–99%, COD: 89–98%, BPA: 89–100%) than single-column CWs (CW1 and CW3) (NH4-N: 76–100%, COD: 84–100%, BPA: 51–100%). This indicates the importance of the compiling strategy along with the selection of an appropriate substrate to improve the pollutant removal capability of CWs.


Sign in / Sign up

Export Citation Format

Share Document