scholarly journals Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1494
Author(s):  
Abdul Manaf ◽  
Xiukang Wang ◽  
Fatima Tariq ◽  
Hafiz Muhammad Jhanzab ◽  
Yamin Bibi ◽  
...  

Application of nanotechnology is crucial for a sustainable increase in food production to cope with the increasing food demand of the burgeoning population. Wheat production has to increase significantly for food security in Pakistan with the help of nanotechnology. In biological systems, utilization of nanoparticles has been increased due to their growth-promoting effects on germination, photosynthetic attributes, nutrient use efficiency and metabolic activities. An experiment was conducted with the objective to establish a relationship between growth parameters and antioxidant enzyme activity in response to silver (Ag) and gold (Au) nanoparticles (NPs). Application of Ag (20 mg/L) and Au NPs (10 mg/L) significantly enhanced the antioxidant enzyme activities of ascorbate peroxidase, catalase and guaiacol peroxidase. Consequently, growth parameters: fresh and dry biomass, leaf area, chlorophyll (a, b) and total chlorophyll contents, also increased significantly. These results suggest that application of Ag and Au NPs has the potential to promote wheat growth through enhancing the antioxidant enzyme activities.

HortScience ◽  
2015 ◽  
Vol 50 (11) ◽  
pp. 1702-1708 ◽  
Author(s):  
Sheng Xu ◽  
Mingmin Jiang ◽  
Jiangyan Fu ◽  
Lijian Liang ◽  
Bing Xia ◽  
...  

From a field experiment, the changes in morphophysiological characters and antioxidant enzyme activities were studied in two Lycoris species (Lycoris radiata and Lycoris aurea) subjected to 16 days of water deficit stress. With the increase of water deficit stress processing time, leaf relative water content (RWC), membrane stability index (MSI), net photosynthesis (Pn), stomatal conductance (gS), transpiration rate (E), and chlorophyll (Chl) content decreased in both studied species. The water use efficiency (WUE) showed an opposite tendency between the two species under water deficit stress, where WUE of L. aurea decreased moderately and WUE of L. aurea increased somehow. Intercellular CO2 concentration (Ci) in L. aurea and L. radiata decreased in respond to water deficit stress at early stages of stress treatment, then increased throughout the rest of the stress period, and reached levels higher than those in well-watered plants at the end of the treatment. In addition, there was a significant increment in soluble sugar content and proline accumulation under water deficit stress in both species, and L. radiata showed a much more accumulation. The activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX) increased in both plants subjected to water deficit stress while declined as the stress time increased. In L. aurea, catalase (CAT) showed a sustained increment, but it responded later and after a transient increase declined again in L. radiata under water deficit stress. In conclusion, L. radiata was more tolerant to water deficit stress than L. aurea as evidenced by its relatively higher water status, higher levels of proline, soluble sugar and pigments, and stronger photoprotection. Moreover, relatively higher antioxidant enzyme activities and lower levels of thiobarbituric acid reactive substances (TBARS) in L. radiata were also associated with its better protection against water deficit stress-induced oxidative damage.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1188
Author(s):  
Liyun Liu ◽  
Nateetorn Petchphankul ◽  
Akihiro Ueda ◽  
Hirofumi Saneoka

Sodic-alkalinity is a more seriously limiting factor in agricultural productivity than salinity. Oat (Avena nuda) is a salt-tolerant crop species and is therefore useful in studying the physiological responses of cereals to alkalinity. We evaluated the differential effects of sodic-alkalinity on two naked oat lines, Caoyou1 and Yanke1. Seedlings of the two lines were exposed to 50 mM alkaline salt mixture of NaHCO3 and Na2CO3 (18:1 molar ratio; pH 8.5) for 2 weeks in a soil environment. Sodic-alkalinity exposure led the assimilation of abundant Na+ at similar concentrations in the organs of both lines. However, Caoyou1 showed much stronger growth than Yanke1, exhibiting a higher dry weight, total leaf area, and shoot height under sodic-alkalinity. Further analysis showed that Caoyou1 was more sodic-alkalinity tolerance than Yanke1. This was firstly because of differences in the oxidative stress defense mechanisms in leaves of the two lines. Antioxidant enzyme activities were either slightly elevated (catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GP), glutathione reductase (GR)) or unaltered (superoxide dismutase (SOD)) in Caoyou1 leaves, but some enzyme (SOD, GPOX, GR) activities were significantly reduced in Yanke1. AnAPX1 transcript levels significantly increased in Caoyou1 under sodic-alkalinity conditions compared with Yanke1, indicating its better antioxidant capacity. Secondly, the related parameters of Mg2+ concentration, phosphoenolpyruvate carboxylase (PEPC) activity, and AnPEPC transcript levels in the leaves showed significantly higher values in Caoyou1 compared with Yanke1. This demonstrated the effective utilization by Caoyou1 of accumulated HCO3− in the irreversible reaction from phosphoenolpyruvate to oxaloacetate to produce inorganic phosphorus, which was elevated in Caoyou1 leaves under alkalinity stress. Overall, the results demonstrated that the greater sodic-alkalinity tolerance of Caoyou1 is the result of: (1) maintained antioxidant enzyme activities; and (2) a higher capacity for the phosphoenolpyruvate to oxaloacetate reactions, as shown by the higher PEPC activity, Mg2+ concentration, and total phosphorus concentration in its leaves, despite the lower soil pH.


2020 ◽  
Vol 73 (3) ◽  
Author(s):  
Amira Hassanein ◽  
Nihal Esmail ◽  
Hanan Hashem

This study was conducted to investigate the effects of sodium nitroprusside (SNP) on antioxidant enzyme activities in <em>Lupinus </em><em>albus </em>subsp. <em>termis </em>(Forssk.) Ponert plants subjected to salt and heavy metal stress. Foliar spray of SNP (0.4 and 0.6 mM) was used as a nitric oxide (NO) donor to treat lupine plants grown under different levels of salinity (0, 75, and 150 mM NaCl) and nickel (Ni) stress (100 and 150 mM Ni sulfate). Growth parameters and yield as well as total phenols, flavonoids, and antioxidant enzyme activities (including those of superoxide dismutase, peroxidase, ascorbate peroxidase, catalase, and glutathione transferase) in NO-treated and untreated plants grown under normal or salt/heavy metal  stress conditions were determined. We found that exogenously applied SNP effectively mitigated the inhibitory effects of salinity and Ni stresses on all measured growth parameters and yield components of lupine plants. In addition, NO downregulated antioxidant enzyme activities, which proved to be a good indicator reflecting changes in the oxidative status of lupine plants in response to SNP, salt, and Ni sulfate treatments.


Stresses ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 253-265
Author(s):  
Chee Kong Yap ◽  
Wen Siang Tan ◽  
Koe Wei Wong ◽  
Ghim Hock Ong ◽  
Wan Hee Cheng ◽  
...  

The present study investigated the antioxidant enzyme activities (AEA) of ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and superoxide dismutase (SOD) as biomarkers of Cu and Pb stress by using Centella asiatica grown in an experimental hydroponic condition. The results showed (i) higher accumulations of Cu and Pb in the roots of C. asiatica than those in the leaves, (ii) synergistic effects of Cu and Pb stress at higher metal-level exposures, and (iii) Cu and Pb stress triggered the increment of APX, CAT, GPX, and SOD levels in both the leaves and roots of C. asiatica. The increment of four AEA indicated that C. asiatica underwent oxidative stress caused by the production of reactive oxygen species when the plant was exposed to Cu and Pb. In order to prevent damages caused by Cu and Pb stress, the AEA system was heightened in C. asiatica, in which APX, CAT, GPX, and SOD can be used as biomarkers of Pb and Cu stress in the plant.


Author(s):  
Cansu ALTUNTAŞ ◽  
Rabiye TERZİ

Halophytes adapting to live in salinized areas can activate some tolerance mechanism through signal compounds to cope with salinity. However, the role of co-activity of signal compounds in salt tolerance of halophytes is not yet fully understood. We have firstly detected that Scorzonera hieraciifolia with fleshy shoots is a succulent extreme-halophyte and researched the changes in signal compounds involved in the salt tolerance mechanism, including inorganic ions, osmoprotectants and substances related to antioxidant system. The levels of signal compounds such as calcium, magnesium, proline, soluble sugar, hydrogen peroxide, superoxide, ascorbate and glutathione concomitantly increased when thickness of shoot tissues enhanced under excess salinity. There were 3.3-fold, 5-fold, 8-fold and 10-fold enhancements in the levels of inorganic ions (Ca and Mg), hydrogen peroxide, ascorbate and glutathione in the shoots treated with excess salinity, respectively. Contents of sodium, potassium and chlorine, and antioxidant enzyme activities, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, catalase and glutathione reductase, also increased in the salinized shoots. Western blot analysis showed that the increases in antioxidant enzyme activities were consistent with increases in their protein contents. The results suggest that extraordinary salt tolerance capacity in Scorzonera hieraciifolia, a succulent extreme-halophyte can be improved by modulated accumulations of signal compounds, especially calcium, magnesium, osmoprotectants, reactive oxygen species and antioxidant substances. Moreover, massive induction of antioxidant enzymes can make strong contributions to salt stress tolerance of S. hieraciifolia.


Author(s):  
Roumiana Dimova Vassilevska-Ivanova ◽  
Lydia Shtereva ◽  
Ira Stancheva ◽  
Maria Geneva

Response of sunflower germplasms viz. cultivated sunflower H. annuus and two breeding lines H. annuus x T. rotundifolia and H. annuus x V. encelioides developed after wide hybridization were used for identification of drought tolerant sunflower genotypes at the seedling growth stage. Three water stress levels of zero (control), -0.4, and -0.8 MPa were developed using polyethyleneglycol-6000 (PEG-6000). Physiological and biochemical stress determining parameters such as root and shoots length, fresh weight, antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPO), ascorbate peroxidase (APX) and antioxidant metabolite content (total antioxidant capacity, total phenols and total flavonoids content) were compared between seedlings of all three genotypes. Results revealed that sunflower genotypes have similar responses at two osmotic potentials for shoot and root length and fresh weight. The data also showed that drought stresss could induce oxidative stress, as indicated by the increase level of ascorbate peroxidase and guaiacol peroxidase at -04 MPa in H. annuus cv 1114. Although the activity of ascorbate peroxidase and guaiacol peroxidase was differentially influenced by drought, the changes of antioxidant enzyme activities such as catalase, superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase subjected to drought stress follow a similar pattern in both breeding lines, indicating that similar defense systems might be involved in the oxidative stress injury in sunflowers. Increase in content of phenols and flavonoids were detected for all three genotypes under stress, which showed that these were major antioxidant metabolites in scavenging cellular H2O2.


Sign in / Sign up

Export Citation Format

Share Document