scholarly journals Evaluation of Advanced Backcrosses of Eggplant with Solanum elaeagnifolium Introgressions under Low N Conditions

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1770
Author(s):  
Gloria Villanueva ◽  
Elena Rosa-Martínez ◽  
Ahmet Şahin ◽  
Edgar García-Fortea ◽  
Mariola Plazas ◽  
...  

Selection and breeding of eggplant (Solanum melongena) materials with good performance under low nitrogen (N) fertilization inputs is a major breeding objective to reduce environmental degradation, risks for human health, and production costs. Solanum elaeagnifolium, an eggplant wild relative, is a potential source of variation for introgression breeding in eggplant. We evaluated 24 plant, fruit, and composition traits in a set of genotyped advanced backcrosses (BC2 and BC3) of eggplant with S. elaeagnifolium introgressions under low N conditions. Significant differences were found between the two parents for most traits, and a wide phenotypic diversity was observed in the advanced backcrosses, with some individuals with a much higher yield, nitrogen use efficiency (NUE), and phenolics content than the S. melongena parent. In general, the lower the proportion of S. elaeagnifolium genome introgressed in the advanced backcrosses, the higher was the general phenotypic resemblance to S. melongena. Putative QTLs were detected for stem diameter (pd4), presence of prickles in stem (ps6), leaf (pl6) and fruit calyx (pc6), fruit width (fw7), chlorogenic acid content (cg5), total phenolic acid peaks area (ph6), chlorogenic acid peak area (ca1), and phenolic acids pattern (cp1). Our results reveal that introgression breeding of eggplant with S. elaeagnifolium has a great interest for eggplant breeding, particularly for adaptation to low N conditions. These materials can potentially contribute to the development of improved eggplant varieties for a more sustainable agriculture.

2016 ◽  
Vol 141 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Mariola Plazas ◽  
Santiago Vilanova ◽  
Pietro Gramazio ◽  
Adrián Rodríguez-Burruezo ◽  
Ana Fita ◽  
...  

Wild relatives represent a source of variation for many traits of interest for eggplant (Solanum melongena) breeding, as well as for broadening the genetic base of this crop. However, interspecific hybridization with wild relatives has been barely used in eggplant breeding programs. As initiation of an introgression breeding program we performed 1424 interspecific hybridizations between six accessions of eggplant from the Occidental and Oriental groups and 19 accessions of 12 wild species from the primary (Solanum incanum and Solanum insanum), secondary (Solanum anguivi, Solanum dasyphyllum, Solanum lichtensteinii, Solanum linnaeanum, Solanum pyracanthos, Solanum tomentosum, and Solanum violaceum), and tertiary (Solanum elaeagnifolium, Solanum sisymbriifolium, and Solanum torvum) genepools. Fruit set, hybrid seed, and seed germination were obtained between Solanum melongena and all wild species of the primary and secondary genepools. The highest fruit set percentage and quantity of seeds per fruit were obtained with the two primary genepool species S. incanum and S. insanum as well as with some secondary genepool species, like S. anguivi, S. dasyphyllum, or S. lichtensteinii, although some differences among species were observed depending on the direction of the hybridization. For small-fruited wild species, the number of seeds per fruit was lower when using them as maternal parent. Regarding tertiary genepool species, fruit set was obtained only in interspecific hybridizations of eggplant with S. sisymbriifolium and S. torvum, although the fruit of the former were parthenocarpic. However, it was possible to rescue viable interspecific hybrids with S. torvum. In total we obtained 58 interspecific hybrid combinations (excluding reciprocals) between eggplant and wild relatives. Some differences were observed among S. melongena accessions in the degree of success of interspecific hybridization, so that the number of hybrid combinations obtained for each accession ranged between 7 (MEL2) and 16 (MEL1). Hybridity of putative interspecific hybrid plantlets was confirmed with a morphological trait (leaf prickliness) and 12 single nucleotide polymorphism markers. The results show that eggplant is amenable to interspecific hybridization with a large number of wild species, including tertiary genepool materials. These hybrid materials are the starting point for introgression breeding in eggplant and in some cases might also be useful as rootstocks for eggplant grafting.


2021 ◽  
Vol 23 (3) ◽  
pp. 256-266
Author(s):  
D BLAISE ◽  

Among fertilizers, nitrogen (N) is the one that is used in the largest amounts mainly due to immediate response to the fertilizer-N application. However, the N use efficiency (NUE) is very low leading to high production costs and also a threat to the environment. Therefore, improving NUE is imperative. The 4 R’s (right quantity, right time, right method and right source) should be considered as the first step for enhancing NUE. Best management practices (BMP’s) of production and protection need to be adopted in order to achieve high NUE. Integration of novel N sources and nanofertilizers and better N fertilization products would lead to high NUE. Furthermore, novel techniques such as Precision Nutrient Management and Variable Rate Application to time nutrient application with crop need, and remote sensing are upcoming technologies that will bring about considerable savings in fertilizer-N. Further we should also account for plant physiological processes, including the diversity of mineral nutrient uptake mechanisms, their translocation and metabolism in order to breed and develop crop cultivars that are efficient N users.


Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Qinjun Huang ◽  
Changjun Ding ◽  
Weixi Zhang ◽  
...  

AbstractIt is important to evaluate nitrogen use efficiency and nitrogen tolerance of trees in order to improve their productivity. In this study, both were evaluated for 338 Populus deltoides genotypes from six provenances. The plants were cultured under normal nitrogen (750 μM NH4NO3) and low nitrogen (5 μM NH4NO3) conditions for 3 months. Growth, chlorophyll content and glutamine synthetase activity of each genotype were measured. Under low nitrogen, heights, ground diameter, leaf area, leaf and root biomass, and chlorophyll contents were significantly lower than those under normal nitrogen level. Correlation analysis showed that nutrient distribution changed under different nitrogen treatments. There was a negative correlation between leaf traits and root biomass under normal nitrogen level, however, the correlation became positive in low nitrogen treatment. Moreover, with the decrease of nitrogen level, the negative correlation between leaf morphology and chlorophyll levels became weakened. The growth of the genotypes under the two treatments was evaluated by combining principal component analysis with a fuzzy mathematical membership function; the results showed that leaf traits accounted for a large proportion of the variation in the evaluation model. According to the results of comprehensive evaluation of plants under the two treatments, the 338 P. deltoides genotypes could be divided into nine categories, with wide genotypic diversity in nitrogen use efficiency and low nitrogen tolerance. As a result, 26 N-efficient genotypes and 24 N-inefficient genotypes were selected. By comparative analysis of their morphological and physiological traits under the two treatments, leaf traits could be significant indicators for nitrogen use efficiency and nitrogen tolerance, which is of considerable significance for breeding poplar varieties with high nitrogen use efficiencies.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Jingyang Tong ◽  
Shujun Wang ◽  
Zhonghu He ◽  
Yan Zhang

Nitrogen (N) fertilization and irrigation are significant agronomic factors affecting wheat production, but little information is available on the effects of reduced N fertilization and irrigation on internal starch structure and physicochemical properties associated with the quality of wheat-based foods. In this study, reduced N fertilization and irrigation were separately applied to investigate their effects on composition and morphological changes, crystalline and external region structure features, swelling power, and gelatinization characteristics of starch granules in bread wheat, with a high N-use-efficiency and water-saving wheat cultivar Zhongmai 175 and a widely grown cultivar Jingdong 17. Compared with a non-N control, reduced N fertilization did not change the crystallinity type and short-range ordered degree of starch; however, it significantly increased relative crystallinity, swelling power and gelatinization enthalpy, whereas amylose content and transition temperatures were decreased. Under reduced irrigation, more small starch granules with compact arrangements appeared in comparison with non-water control. Relative crystallinity, swelling power and gelatinization enthalpy of starch were increased, whereas short-range ordered degree and transition temperatures were decreased. Moreover, the starch of the two cultivars appeared to differ in response to both the N and water treatments. The findings indicated that reduced N fertilization or irrigation markedly influenced the structure and physicochemical characteristics of wheat starch, providing important information for developing elite cultivars with high N and water use efficiency and outstanding starch quality.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2021 ◽  
Vol 11 (15) ◽  
pp. 6941
Author(s):  
Cláudia M. B. Neves ◽  
António Pinto ◽  
Fernando Gonçalves ◽  
Dulcineia F. Wessel

Elderberry (Sambucus nigra L.) juice concentrate is highly rich in polyphenols, particularly anthocyanins and flavonols, which have been associated with a wide range of health-promoting properties. Phenolic compounds, in particular anthocyanins, are unstable and may change during storage, which might influence the product color quality and its potential health effects. The aim of this study was to evaluate the changes in the polyphenols profile of elderberry juice concentrate produced at an industrial scale during seven months of storage at 5 °C and at room temperature. The total phenolic content, the total monomeric anthocyanins, the percent polymeric color, and the ABTS•+ scavenging activity were monitored over time. In addition, the profile and content of the main individual phenolic compounds were also assessed by HPLC-DAD. The results show that cyanidin-3-O-sambubioside, cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside-5-O-glucoside, cyanidin-3,5-O-diglucoside, chlorogenic acid, rutin, and quercetin-3-O-glucoside were the main phenolic compounds identified. Storage at room temperature resulted in a strong reduction in total monomeric anthocyanin content accompanied by an increase in percent polymeric color values. Cyanidin-3-O-sambubioside and cyanidin-3-O-glucoside degraded faster than cyanidin-3,5-O-diglucoside and cyanidin-3-O-sambubioside-5-O-glucoside. Concentration of chlorogenic acid also decreased over storage, whereas rutin and quercetin-3-O-glucoside were quite stable. Storage at 5 °C caused a lower impact on the contents of anthocyanins and chlorogenic acid and the percent polymeric color was not affected. The total phenolic content and the in vitro antioxidant activity remained quite similar over the time, for both temperatures, suggesting that elderberry concentrates still preserve their health benefits of antioxidant capacity after seven months of storage.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. eaaz2046 ◽  
Author(s):  
Kun Wu ◽  
Shuansuo Wang ◽  
Wenzhen Song ◽  
Jianqing Zhang ◽  
Yun Wang ◽  
...  

Because environmentally degrading inorganic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced nitrogen use efficiency. We found that genome-wide promotion of histone H3 lysine 27 trimethylation (H3K27me3) enables nitrogen-induced stimulation of rice tillering: APETALA2-domain transcription factor NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) facilitates nitrogen-dependent recruitment of polycomb repressive complex 2 to repress branching-inhibitory genes via H3K27me3 modification. NGR5 is a target of gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1)–promoted proteasomal destruction. DELLA proteins (characterized by the presence of a conserved aspartate-glutamate-leucine-leucine-alanine motif) competitively inhibit the GID1-NGR5 interaction and explain increased tillering of green revolution varieties. Increased NGR5 activity consequently uncouples tillering from nitrogen regulation, boosting rice yield at low nitrogen fertilization levels. NGR5 thus enables enhanced nitrogen use efficiency for improved future agricultural sustainability and food security.


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


1986 ◽  
Vol 34 (1) ◽  
pp. 37-47
Author(s):  
J.H.J. Spiertz ◽  
L. Sibma

The N yield and the N use efficiency were studied in a 3-year experiment with various cropping systems of Lolium perenne, Medicago sativa and maize. N yields of L. perenne and maize were about 450 and 200 kg/ha, resp. N yields of M. sativa ranged from about 400 to 600 kg/ha depending on crop age and weather conditions. N fixation rates of M. sativa were assessed in 1982 and ranged from 107 to 507 kg/ha for high (450 kg N/ha) and no N fertilization, resp. The after-effects of 1-, 2- and 3-year crops of L. perenne, M. sativa and maize on the DM and N yields of a test crop of maize were measured. Depending on the age of the preceding L. perenne crop, annually supplied with 450 kg N/ha, the N after-effects ranged from 120 to 175 kg/ha. The after-effect of a previous cropping with M. sativa was independent of the N dressing and ranged from 140 to 175 kg/ha. For comparison, the after-effect of a preceding maize crop ranged from 90 to 110 kg/ha. Mineral soil N reserves were determined in spring and autumn. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


Sign in / Sign up

Export Citation Format

Share Document