scholarly journals Do Water and Nitrogen Management Practices Impact Grain Quality in Maize?

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1851
Author(s):  
Adrian A. Correndo ◽  
Javier A. Fernandez ◽  
P.V. Vara Prasad ◽  
Ignacio A. Ciampitti

Concomitantly pursuing superior maize (Zeamays L.) productivity with grain quality is essential for food security. Therefore, this study provides a meta-analysis of 21 studies assembled from the scientific literature to tackle the effect of the two most limiting factors for maize production, water and nitrogen (N), and their impacts on grain quality composition, herein focused on protein, oil, and starch concentrations. Water stress levels resulted in erratic responses both in direction and magnitude on all the grain quality components, plausibly linked to a different duration, timing, and intensity of water stress treatments. Nitrogen fertilization more consistently affected the grain protein concentration, with a larger effect size for protein as fertilizer N levels increased (protein change of +14% for low, ≤70 kg N ha−1; +21% for medium, >70–150 kg N ha−1; and +24% for high, >150 kg N ha−1). Both starch and oil grain concentrations presented less variation to fertilizer N levels. The positive protein–oil correlation (r = 0.49) permitted to infer that although the oil concentration may reach a plateau (8%), further increases in protein are still possible. Augmented research on grain quality is warranted to sustain food production but with both high nutritional and energetic value for the global demand.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 281
Author(s):  
Jian Li ◽  
Man Wu ◽  
Keru Wang ◽  
Bo Ming ◽  
Xiao Chang ◽  
...  

Exploring the maximum grain yields (GYs) and GY gaps in maize (Zea mays L.) can be beneficial for farmer to identify the GY-limiting factors and take adaptive management practices for a higher GY. The objective of this work was to identify the optimum maize plant density range and the ways to narrow maize GY gaps based on the variation of the GYs, dry matter (DM) accumulation and remobilization with changes in plant density. Field experiments were performed at the 71 Group and Qitai Farm in Xinjiang, China. Two modern cultivars, ZhengDan958 and ZhongDan909, were planted at 12 densities, ranging from 1.5 to 18 plants m−2. With increased plant density, single plant DM decreased exponentially, whereas population-level DM at the pre- (DMBS) and post- (DMAS) silking stages increased, and the amount of DM remobilization (ARDM) increased exponentially. Further analysis showed that plants were divided four density ranges: range I (<6.97 plants m−2), in which no DM remobilization occurred, DMBS and DMAS correlated significantly with GY; range II (6.97–9.54 plants m−2), in which the correlations of DMBS, DMAS, and ARDM with GY were significant; range III (9.54–10.67 plants m−2), in which GY and DMAS were not affected by density, DMBS increased significantly, and only the correlation of DMAS with GY was significant; and range IV (>10.67 plants m−2), in which the correlations of DMBS and ARDM with GY decreased significantly, while that of DMAS increased significantly. Therefore, ranges I and II were considered to be DM-dependent ranges, and a higher GY could be obtained by increasing the population-level DMAS, DMAS, and ARDM. Range III was considered the GY-stable range, increasing population-level DMBS, as well as preventing the loss of harvest index were the best way to enhance maize production. Range IV was interpreted as the GY-loss range, and a higher GY could be obtained by preventing the loss of HI and population-level DMAS.


2020 ◽  
Vol 3 (1) ◽  
pp. 18-40
Author(s):  
Dr. Kabwe Harnadih Mubanga ◽  
Prof. Martin Joachim Steyn

Purpose: This study was based on the following objectives; (1) to investigate the sufficiency of rainfall received in Choma by assessing the differences in the precipitation received (PPT) against the potential evapotranspiration (PET) and actual evapotranspiration (ETa) for maize, and (2) to estimate potential for maize production in Choma under the current rainfall and temperature conditions.Methodology: The Soil Water Balance (SWB) crop growth model was used to analyze the rainfall-temperature interactions and estimate the maize stress index (SI) for analyses of crop water stress and potential yields (Yp). The relationships involving precipitation, potential and actual evapotranspiration were performed using time series auto regression and Fisher’s least significant difference (LSD).Findings: Choma was not in a state of water deficit as maize water requirements were lower than precipitation. Maize water stress was destructive when it occurred in the mid than late stages of maize development. Mean precipitation (799.29mm) was higher than mean actual evapotranspiration (719.23 mm), though the difference was insignificant (F = 1.281; p = 0.126). However, potential evapotranspiration for maize in the area was significantly higher than the actual evapotranspiration (mean = 719.23) (F = 5.621; p = 0.012). Less destructive moderately dry periods seldom occurred during the sensitive initial and mid periods of maize development.Results: Farmers in Choma can potentially increase their rain-fed maize yields from the current 1.89 t/ha/year to 4.9 t/ha/year by managing limiting factors to maize production such as reduced access to fertilizer, declining of soil nutrients, late delivery of inputs, lack of markets, pests and lack of proper nutrient management. The study also showed that management rather than climatic conditions is responsible for the low yields in Choma area. Unique contribution to theory, practice and policy: The study established a methodology for simulating potential yields of farmers given existing climatic and soil conditions. Policy should concentrate on improving crop management rather than the current concentration on mitigating impacts of climate change as these are not the factors responsible for observed reduced crop yields.


2017 ◽  
Vol 46 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Mohammad Albaji ◽  
Abrahim Alboshokeh

Land suitability assessments can provide useful information to help optimize agricultural land use. Due to the current lack of appropriate land management practices in the Fakkeh region, southwest Iran, a land suitability evaluation study for key agricultural crops, including wheat, alfalfa, maize and barley, covering 43,700 ha was undertaken. Qualitative evaluation was carried out using two methods, the simple limitation and parametric methods (Storie and square root method), to compare land and climate characteristics with crop needs. The most important limiting factors in wheat, alfalfa and barley production included the physical properties of the soil, especially light soil texture. The major limiting factors in maize production were low relative humidity and high n/ N ratio during the plant growth period, light soil texture, soil salinity and alkalinity.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 545
Author(s):  
Paramanandham Krishnamoorthy ◽  
Kuralayanapalya P. Suresh ◽  
Kavitha S. Jayamma ◽  
Bibek R. Shome ◽  
Sharanagouda S. Patil ◽  
...  

In this study, the major mastitis pathogen prevalence in the cattle and buffalo of the world was estimated by a meta-analysis. Staphylococcus (S) species, Streptococcus (St) species, and Escherichia coli (Ec) prevalence studies reported during 1979–2019 were collected using online databases, and offline resources. A meta-analysis of these data was done with the meta package in R-Software. The Staphylococcus aureus was the major mastitis pathogen, mostly causing subclinical mastitis, Ec causing clinical mastitis and St causing subclinical and clinical mastitis. The pooled prevalence estimates of S, St, and Ec were 28%, 12%, and 11% in the world from 156, 129, and 92 studies, respectively. The S, St, and Ec prevalences were high in Latin America (51%), Oceania (25%), and Oceania (28%), respectively. Higher S, St, and Ec prevalences were observed by molecular methods, signifying high sensitivity and usefulness for future studies. Among bacterial species, S. aureus (25%) followed by coagulase-negative Staphylococcus species (20%), Escherichia coli (11%), St. agalactiae (9%), St. uberis (9%) were the important pathogens present in the milk of the world. We hypothesize that there is a urgent need to reduce mastitis pathogen prevalence by ensuring scientific farm management practices, proper feeding, therapeutic interventions to augment profits in dairying, and improving animal and human health.


2021 ◽  
Vol 322 ◽  
pp. 107635
Author(s):  
Gizaw Desta ◽  
Wuletawu Abera ◽  
Lulseged Tamene ◽  
Tilahun Amede

2018 ◽  
Vol 22 (5) ◽  
pp. 2795-2809 ◽  
Author(s):  
Hafsa Ahmed Munia ◽  
Joseph H. A. Guillaume ◽  
Naho Mirumachi ◽  
Yoshihide Wada ◽  
Matti Kummu

Abstract. Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status – i.e. they are not yet dependent on upstream water to avoid stress – but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.


Sign in / Sign up

Export Citation Format

Share Document