scholarly journals The Use of Temperate Tannin Containing Forage Legumes to Improve Sustainability in Forage–Livestock Production

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2264
Author(s):  
Sebastian P. Lagrange ◽  
Jennifer W. MacAdam ◽  
Juan J. Villalba

Greenhouse gas emissions from ruminant livestock production systems contribute significantly to the environmental footprint of agriculture. Emissions are lower for feedlot systems than for grass-based systems primarily because of the extra time required for grass-finished cattle to reach slaughter weight. In contrast, legume forages are of greater quality than grasses, which enhances intake and food conversion efficiencies, leading to improvements in production and reductions in environmental impacts compared with forage grasses. In addition, the presence of certain bioactives in legumes such as condensed tannins (CT) enhance the efficiency of energy and protein use in ruminants relative to grasses and other feeds and forages. Grazing tannin-containing legumes also reduce the incidence of bloat and improve meat quality. Synergies among nutrients and bioactives when animals graze diverse legume pastures have the potential to enhance these benefits. Thus, a diversity of legumes in feeding systems may lead to more economically, environmentally, and socially sustainable beef production than grass monocultures or feedlot rations.

EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 4
Author(s):  
Flávia Van Cleef ◽  
Jose Dubeux

The use of tannin-containing forages has received attention from researchers around the globe because of potential benefits of condensed tannins to livestock health and nutrition as well as possibilities to reduce methane emission. This new 4-page publication of the UF/IFAS Agronomy Department targets two audiences: Extension faculty who need information on potential benefits and negative effects of condensed tannins to livestock production, and producers who intend to feed tannin-containing forages in their operation. Written by Flavia van Cleef and Jose Dubeux.https://edis.ifas.ufl.edu/ag440


2018 ◽  
Vol 55 (5) ◽  
pp. 776-792 ◽  
Author(s):  
EDWIN GARCIA ◽  
PABLO SILES ◽  
LISA EASH ◽  
REIN VAN DER HOEK ◽  
SEAN P. KEARNEY ◽  
...  

SUMMARYSmallholder livestock systems in Central America are typically based on pastures with traditional grasses and associated management practices, such as pasture burning and extensive grazing. With the rise of the global population and a corresponding increase in demand for meat and milk production, research efforts have focused on the development of improved grasses and the incorporation of legume species that can increase productivity and sustainability of Central American livestock systems. However, farmer adoption remains very limited, in part due to the lack of site-specific evaluation and recommendations by local institutions. Using a multi-site participatory approach, this study examined the potential of five improved grasses and five species of forage legumes as alternatives to the broadly disseminated grass Hyparrhenia rufa (cv. Jaragua) in pasture-based cattle systems in western Honduras and northern El Salvador. Improved grasses (four Brachiaria sp. and Megathyrsus maximus) produced significantly more biomass than H. rufa; also four of the five legume varieties evaluated (Canavalia ensiformis, Canavalia brasiliensis, Vigna unguiculata, and Vigna radiata) demonstrated high adaptability to diverse environmental conditions across sites. Farmer participatory evaluation offers a valuable means to assess performance of forages and will likely contribute to their improved utilization. Future research is needed on more refined management recommendations, pasture system design, costs and environmental benefits associated with the adoption of these forages in local livestock production systems.


2008 ◽  
Vol 42 ◽  
pp. 71-85 ◽  
Author(s):  
J.A. Woolliams ◽  
O. Matika ◽  
J. Pattison

SummaryLivestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.2. Large changes in the demographic and regional distribution of these demands.3. The need to reduce poverty in rural communities by providing sustainable livelihoods.4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.5. A growing awareness of the need to reduce the environmental impact of livestock production.6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


2016 ◽  
Vol 39 (3) ◽  
pp. 334-343 ◽  
Author(s):  
Rafal Cupek ◽  
Kamil Folkert ◽  
Marcin Fojcik ◽  
Tomasz Klopot ◽  
Grzegorz Polaków

Classical control applications with a centralized logic and distributed input/output system are being replaced by dynamic environments of cooperating components. Thus, the OPC (Object Linking and Embedding for Process Control) UA (Unified Architecture) is becoming more popular, because the OPC Data Access substandard is not well suited for distributed systems. Moreover, in many production systems, redundant data servers are preferred, for financial and legal reasons. Providing performance evaluation gives an estimate of the time required (and data samples lost) to switch to a backup data source for redundant OPC UA architecture, depending on the failure detection method, number of variables and redundancy mode.


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


2012 ◽  
Vol 34 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Heloísa Ferro Constâncio Mendonça ◽  
Eunice Oliveira Calvete ◽  
Alexandre Augusto Nienow ◽  
Rosiani Castoldi da Costa ◽  
Lucas Zerbielli ◽  
...  

The phyllochron is defined as the time required for the appearance of successive leaves on a plant; this characterises plant growth, development and adaptation to the environment. To check the growth and adaptation in cultivars of strawberry grown intercropped with fig trees, it was estimated the phyllochron in these production systems and in the monocrop. The experiment was conducted in greenhouses at the University of Passo Fundo (28º15'41'' S, 52º24'45'' W and 709 m) from June 8th to September 4th, 2009; this comprised the period of transplant until the 2nd flowering. The cultivars Aromas, Camino Real, Albion, Camarosa and Ventana, which seedlings were originated from the Agrícola LLahuen Nursery in Chile, as well as Festival, Camino Real and Earlibrite, originated from the Viansa S.A. Nursery in Argentina, were grown in white polyethylene bags filled with commercial substrate (Tecnomax®) and evaluated. The treatments were arranged in a randomised block design and four replicates were performed. A linear regression was realized between the leaf number (LN) in the main crown and the accumulated thermal time (ATT). The phyllochron (degree-day leaf-1) was estimated as the inverse of the angular coefficient of the linear regression. The data were submitted to ANOVA, and when significance was observed, the means were compared using the Tukey test (p < 0.05). The mean and standard deviation of phyllochrons of strawberry cultivars intercropped with fig trees varied from 149.35ºC day leaf-1 ± 31.29 in the Albion cultivar to 86.34ºC day leaf-1 ± 34.74 in the Ventana cultivar. Significant differences were observed among cultivars produced in a soilless environment with higher values recorded for Albion (199.96ºC day leaf-1 ± 29.7), which required more degree-days to produce a leaf, while cv. Ventana (85.76ºC day leaf-1 ± 11.51) exhibited a lower phyllochron mean value. Based on these results, Albion requires more degree-days to issue a leaf as compared to cv. Ventana. It was conclude that strawberry cultivars can be grown intercropped with fig trees (cv. Roxo de Valinhos).


Sign in / Sign up

Export Citation Format

Share Document