scholarly journals Baicalin-Copper Complex Modulates Gut Microbiota, Inflammatory Responses, and Hormone Secretion in DON-Challenged Piglets

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1535
Author(s):  
Andong Zha ◽  
Zhijuan Cui ◽  
Ming Qi ◽  
Simeng Liao ◽  
Jia Yin ◽  
...  

The present experiment assessed the inflammatory responses, hormone secretion, and gut microbiota of weanling piglets administered baicalin-copper complex (BCU) or deoxynivalenol (DON) supplementation diets. Twenty-eight piglets were randomly assigned to four groups: control diet (Con group), a 4 mg DON/kg diet (DON group), a 5 g BCU/kg diet (BCU group), a 5 g BCU + 4 mg DON/kg diet (DBCU group). After 14 days, the results showed that dietary BCU supplementation remarkably increased the relative abundance of Clostrium bornimense and decreased the relative abundance of Lactobacillus in the DBCU group (p < 0.05). BCU decreased the serum concentration of IgG, IL-2, IFN-γ, and IgA in DON treated piglets (p < 0.05), and promoted the serum concentration of IL-1β, IgG, IL-2, IFN-γ, IgA, IL-6, IgM, and TNFα in normal piglets (p < 0.05). BCU increased the concentrations of serum IGF1, insulin, NPY, GLP-1, and GH, and decreased the concentrations of serum somatostatin in no DON treated piglets (p < 0.05). Dietary BCU supplementation significantly promoted the secretion of somatostatin, and inhibited the secretion of leptin in piglets challenged with DON (p < 0.05). BCU regulated the expression of food intake-related genes in the hypothalamus and pituitary of piglets. Collectively, dietary BCU supplementation alleviated inflammatory responses and regulated the secretion of appetite-regulating hormones and growth-axis hormones in DON challenged piglets, which was closely linked to changes of intestinal microbes.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qin He ◽  
Tiande Zou ◽  
Jun Chen ◽  
Jia He ◽  
Li Jian ◽  
...  

This study aimed to investigate the effects of maternal methyl-donor micronutrient supplementation during gestation on gut microbiota and the fecal metabolic profile in offspring piglets. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The body weights of offspring piglets were recorded at birth and weaning. Besides this, fresh fecal samples of offspring piglets were collected at 7, 14, and 21 days. The gut microbiota composition, metabolic profile, and short-chain fatty acid (SCFA) profiles in the fecal samples were determined using 16S rDNA sequencing, liquid chromatography-mass spectrometry metabolomics, and gas chromatography methods, respectively. The results showed that maternal methyl-donor micronutrient supplementation increased the microbiota diversity and uniformity in feces of offspring piglets as indicated by increased Shannon and Simpson indices at 7 days, and greater Simpson, ACE, Chao1 and observed species indices at 21 days. Specifically, at the phylum level, the relative abundance of Firmicutes and the Firmicutes to Bacteroidetes ratio were elevated by maternal treatment. At the genus level, the relative abundance of SCFA-producing Dialister, Megasphaera, and Turicibacter, and lactate-producing Sharpea as well as Akkermansia, Weissella, and Pediococcus were increased in the MET group. The metabolic analyses show that maternal methyl-donor micronutrient addition increased the concentrations of individual and total SCFAs of 21-day piglets and increased metabolism mainly involving amino acids, pyrimidine, and purine biosynthesis. Collectively, maternal methyl-donor micronutrient addition altered gut microbiota and the fecal metabolic profile, resulting in an improved weaning weight of offspring piglets.


2020 ◽  
Author(s):  
Qinghui Shang ◽  
Sujie Liu ◽  
Hansuo Liu ◽  
Shad Mahfuz ◽  
Xiangshu Piao

Abstract Background: Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation.Methods: Forty-five multiparous sows (Yorkshire × Landrace; 3-6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation).Results: Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation.Conclusions: Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qinghui Shang ◽  
Sujie Liu ◽  
Hansuo Liu ◽  
Shad Mahfuz ◽  
Xiangshu Piao

Abstract Background Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation. Methods Forty-five multiparous sows (Yorkshire × Landrace; 3–6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation). Results Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation. Conclusions Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sujuan Ding ◽  
Hongmei Jiang ◽  
Jun Fang ◽  
Gang Liu

The purpose of this study was to explore the regulatory effect of resveratrol (RES) on lipopolysaccharide (LPS)-induced inflammation and its influence on intestinal microorganisms and serum atlas in murine models during the development of inflammation to explore a novel method for the regulation of inflammation. Mice were randomly assigned to three groups: control (CON), LPS, and RES–LPS. The results showed that RES mitigated the inflammatory damage to the intes-tines and liver induced by LPS. Compared with the LPS group, RES treatment decreased the levels of TNF-α, IL-6, IFN-γ, myeloperoxidase, and alanine aminotransferase in the liver. Serum metabolic profile monitoring showed that, compared with the CON group, LPS decreased the levels of five metabolites, including cycloartomunin and glycerol triundecanoate, and increased the levels of eight metabolites, including N-linoleoyl taurine and PE(O-16:0/20:5(5Z), 8Z, 11Z, 14Z, 17Z). Conversely, RES treatment increased the levels of eight metabolites, including pantothenic acid, homovanillic acid, and S-(formylmethyl)glutathione, and reduced seven metabolites, including lysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) and 13-cis-retinoic acid, etc., in comparison with the LPS group. Moreover, RES treatment alleviated the negative effects of LPS on intestinal microbes by reducing, for instance, the relative abundance of Bacteroidetes and Alistipes, and increasing the relative abundance of Lactobacillus. These results suggest that RES has great potential for preventing in-flammation.


2022 ◽  
Vol 9 ◽  
Author(s):  
Meng Li ◽  
Xiaoming Wang ◽  
Xingjie Lin ◽  
Xiuju Bian ◽  
Rui Jing ◽  
...  

Background: Henoch-Schönlein purpura, now called immunoglobulin A (IgA) vasculitis, is a common autoimmune disease in children, its association with gut microbiota composition remains unknown.Methods: The collected cases were divided into three groups: G1 group of simple skin type, G2 group with no digestive tract expression, G3 group of mixed digestive tract, and C group of healthy children. The fecal samples of each group of children were collected and the sequencing data was processed and analyzed. The dilution curve reflected the reasonableness of the amount of sequencing data.Results: The number of species composition sequences in the G1, G2 and G3 groups was lower than that in the C group, especially for the G2 and G3 groups. The four most abundant bacteria were Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria. The relative abundance of Proteobacteria in the G2 and G3 groups was significantly higher than that in the G1 and C groups, while the relative abundance of Actinobacteria was significantly reduced, and the relative abundance of Actinobacteria in the G1 group was lower than that in the C group. Principal component analysis of the UPGMA clustering tree and each group of samples showed that the microbial community composition of the same group of samples was similar.Conclusions: The abundance of intestinal microbes in children with IgA vasculitis is lower than in normal children. Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria are the four most abundant bacteria in the intestinal flora of children. Proteobacteria and Actinobacteria are associated with organ involvement in IgA vasculitis.


Author(s):  
Jeong Jae Lee ◽  
Sheena Kim ◽  
Jin Ho Cho ◽  
Hyunjin Kyoung ◽  
Seonmin Lee ◽  
...  

Abstract The current study was to assess the effects of substituting corn with ground brown rice (GBR) on growth performance, immune status, and gut microbiota in weanling pigs. Seventy-two weanling pigs [28-day-old with 6.78 ± 0.94 kg body weight (BW)] were randomly allotted to 2 dietary treatments with 6 pens and 6 pigs (3 barrows and gilts) per pen with in a randomized complete block design. The control pigs were fed a typical diet for weanling pigs based on corn and soybean meal diet (control diet: CON), and the other pigs were fed a diet formulated by replacing corn with GBR for 35 days. Growth performance, immune status, and gut microbiota of weanling pigs were measured. The substitution of corn with GBR did not affect growth performance or diarrhea frequency. Additionally, there were no differences in white blood cell number, hematocrit, cortisol, C-reactive protein, serum TNF-α levels between pigs fed CON or GBR for the first 2 weeks after weaning. However, weanling pigs fed GBR had lower (P &lt; 0.05) serum TGF-β1 level than those fed CON. Furthermore, weanling pigs fed GBR had increased (P &lt; 0.05) relative abundance of phylum Firmicutes and genus Lactobacillus and Streptococcus and decreased (P &lt; 0.05) relative abundance of phylum Bacteroidetes and genus Clostridium and Prevotella in the gut microbiota compared with those fed CON. In conclusion, there was no significant difference in growth performance when corn was replaced with GBR in diets for weanling pigs. Furthermore, the substitution of corn with GBR in weaning diet modulated immune status and gut microbiota of pigs by increasing beneficial microbial communities and reducing harmful microbial communities. Overall, GBR-based diet is a potentially alternative to corn-based diet without negative effects on growth performance, immune status and gut microbiota changes of weanling pigs.


2021 ◽  
Vol 9 (8) ◽  
pp. 1767
Author(s):  
Jin Zhou ◽  
Ji Luo ◽  
Shumin Yang ◽  
Qiling Xiao ◽  
Xiliang Wang ◽  
...  

Enterococcus faecium HDRsEf1 (HDRsEf1) was identified to reduce the incidence of diarrhea in weaned piglets, but the mechanism has not been elucidated yet. Based on the fact that gut microbiota plays a crucial role in regulating inflammatory responses, the effects of HDRsEf1 on microbiota across the intestinal tract in weaned piglets were investigated. Microbiota from the luminal contents and the mucosa of the ileum, cecum, and colon of HDRsEf1-treated piglets were explored by 16S rRNA sequencing and qPCR. It was demonstrated that microbiota in different gut niches responded specifically to HDRsEf1, with major alterations occurring in the ileum and cecum. The total bacterial load of microbiota in ileal luminal contents and the relative abundance of Escherichia-Shigella in the ileal mucosa was significantly down-regulated by HDRsEf1 administration, while the relative abundance of butyrate-producing bacteria (including Clostridiaceae-1, Rumencoccidae, and Erysipelotrichaceae) in cecal luminal contents was significantly up-regulated. Moreover, the utilization of HDRsEf1 improved intestinal morphological development and reduced the inflammatory response, which were negatively correlated with the relative abundance of Escherichia-Shigella in the ileal mucosa and butyrate-producing bacteria in cecal luminal contents, respectively. Collectively, this study suggests that the administration of HDRsEf1 alters gut microbiota, thereby alleviating inflammation and improving intestinal morphological development in weaned piglets.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2990
Author(s):  
Zhen Wang ◽  
Hongxu Liu ◽  
Jiaxiu Liu ◽  
Xiaomeng Ren ◽  
Guoku Song ◽  
...  

Acrylamide (AA) has been extensively examined for its potential toxicological effects on humans and animals, but its impacts on gut microbiota and effects on hosts’ susceptibility to enteric infection remain elusive. The present study was designed to evaluate the effect of AA on gut microbiota of mice and susceptibility of mice to S. Typhimurium infection. After four weeks’ intervention, mice fed with AA exhibited significantly decreased body weight. Meanwhile, 16S rRNA gene sequencing showed reduced relative abundance of Firmicutes and increased abundance of Bacteroidetes in AA-treated mice prior to infection. In addition, we observed high relative abundance of Burkholderiales and Erysipelotrichales, more specifically the genus Sutterella and Allobaculum, respectively, in AA-treated mice before infection. Subsequently, the mice were orally infected with S. Typhimurium. The histological changes, systemic dissemination of S. Typhimurium, and inflammatory responses were examined. Compared to mice fed with normal diet, mice fed AA exhibited higher level of bacterial counts in liver, spleen, and ileum, which was consistent with exacerbated tissue damage determined by histological analyses. In addition, higher expression of pro-inflammaroty cytokines, p-IκBα, and p-P65 and lower mRNA expressions of mucin2, occludin, zo-1, claudin-1, and E-cadherin were detected in AA-treated mice. These findings provide novel insights into the potential health impact of AA consumption and the detailed mechanism for its effect on S. Typhimurium infection merit further exploration.


Sign in / Sign up

Export Citation Format

Share Document