scholarly journals Relative Late Gestational Muscle and Adipose Thickness Reflect the Amount of Mobilization of These Tissues in Periparturient Dairy Cattle

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2157
Author(s):  
Conor McCabe ◽  
Aridany Suarez-Trujillo ◽  
Theresa Casey ◽  
Jacquelyn Boerman

Due to insufficient dry matter intake and heightened nutrient requirements in early lactation, periparturient dairy cows mobilize adipose and muscle tissues to bridge energy and amino acid gaps, respectively. Our objective was to evaluate the relationship between the relative muscle thickness of late pregnant cows and their early lactation performance. At 35 d before expected calving (BEC), longissimus dorsi muscle thickness (LDT) was measured in forty-one multiparous Holstein cows via ultrasound. Tissue mobilization was evaluated via ultrasound images of LDT and backfat thickness (BFT) at 21 and 7 d BEC as well as at 0, 10, 30, and 60 DIM. Plasma concentrations of 3-methylhistidine (3-MH), creatinine (CRE), non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) were evaluated weekly. Milk yield and milk component data were collected through 60 DIM. Cattle were assigned post hoc to high-muscle (HM; n = 20; LDT > 4.49 cm) or low-muscle (LM; n = 21; ≤4.37 cm) groups, with mean LDT at 35 d BEC greater in HM (5.05 ± 0.49) than in LM (3.52 ± 0.65) animals. Between 35 and 21 d BEC, LM cows gained LDT, whereas HM cows gained BFT. HM cows mobilized more muscle from 21 d BEC to 30 DIM, as reflected by a greater loss of LDT, greater 3-MH concentrations (532 vs. 438 ± 30 ng/mL), and a greater 3-MH:CRE ratio (0.164 vs. 0.131 ± 0.008) in the first three weeks postpartum. The LDT and BFT at 21 d BEC were related to the amount of respective tissue mobilized through 30 DIM (R2 = 0.37 and 0.88, respectively). Although calves born to HM cattle were larger (45.2 vs. 41.8 ± 0.7 kg), HM cows produced less milk (38.8 vs. 41.6 ± 0.8 kg/d) with a tendency towards higher fat content (4.33 vs. 4.05 ± 0.12%), likely related to the mobilization of more backfat from 0 to 60 DIM (1.78 vs. 0.68 ± 0.34 mm), compared to LM cattle. These findings suggest that a cow’s metabolic status, as measured by LDT and BFT prepartum, may influence the metabolic strategy the animal uses to meet energy and amino acid requirements in late gestation and early lactation.

2007 ◽  
Vol 2007 ◽  
pp. 182-182
Author(s):  
Forouzan Tabatabaie ◽  
Hassan Fathi ◽  
Mohsen Danesh

Whole soybean has 40-42 percent CP and used as high energy-protein supplement for early lactation dairy cows. However, the protein is highly degradable, so small amounts of amino acids can be reached to small intestine to meet high amino acid requirements of early lactating cows. Therefore, various chemical and physical treatments have been suggested to decrease ruminal protein degradability of soybeans. The practical use and application of any one method to lower ruminal feed degradability is dependent not only on its efficacy but also on its cost effectiveness, safety and ease of application. For these reasons, heat treatment is the most commonly used physical method (Plegge et al., 1985). The purpose of this study was to determine how roasting of soybeans affect plasma essential amino acid concentrations in early lactation cows.


2005 ◽  
Vol 288 (5) ◽  
pp. E907-E913 ◽  
Author(s):  
Weihua Shen ◽  
Paul Wisniowski ◽  
Scott C. Denne ◽  
David W. Boyle ◽  
Edward A. Liechty

Fetal nutritional stress may result in intrauterine growth restriction and postnatal insulin resistance. To determine whether insulin resistance can begin in utero, we subjected late-gestation (130–135 days) ewes to 120 h of complete fasting and compared the results with our previous work in fed ewes ( 38 ). We determined the effect of insulin and/or recombinant human (rh)IGF-I infusion on ovine fetal phenylalanine kinetics, protein synthesis, and phenylalanine accretion. Experimental infusates were 1) saline, 2) rhIGF-I plus a replacement dose of insulin (40 nmol IGF-I/h + 16 mIU insulin/h), 3) insulin (890 mIU/h), and 4) IGF-I plus insulin (40 nmol IGF-I/h + 890 mIU insulin/h). During hormone infusion, both glucose and amino acid concentrations were clamped at basal concentrations. Amino acid infusion was required during infusion of either hormone to maintain plasma concentrations constant. However, the amount required during insulin infusion was less than during IGF-I infusion and 40% less than the amount required during identical studies in nonfasted animals. Phenylalanine used for protein synthesis and accretion was increased compared with control animals but again less so than in the nonfasted animals. In contrast to nonfasted animals, neither hormone increased the fractional synthetic rate of skeletal muscle protein nor that of plasma albumin. These results indicate that a short but severe nutritional stress can significantly alter the fetal anabolic response to insulin even when both glucose and amino acid substrate supplies are restored. Therefore, adaptive responses characterized by insulin resistance begin in utero when the fetus is subjected to sufficient nutritional stress.


1995 ◽  
Vol 60 (1) ◽  
pp. 99-107 ◽  
Author(s):  
I. Tauveron ◽  
E. Debras ◽  
S. Tesseraud ◽  
Y. Bonnet ◽  
Ph. Thiéblot ◽  
...  

AbstractThe present experiment was undertaken to investigate adaptations to insulin action on metabolism during lactation by using plasma concentrations of β hydroxybutyrate (β OH) free fatty acids (FFA) and lactate (L) as indicators. The study included three groups each of four goats. One group was used at 12 to 31 days post partum (early lactation), one group at 98 to 143 days post partum (mid lactation) and one group at 1 year post partum (dry period). For a given physiological state, each goat was examined four times to study the effect of insulin infused for 2·5 h at two rates, medium (0·36 nmol/min) followed by high (1·79 nmol/min) in two protocols: under normal aminoacidaemia in study 1 followed by hyperaminoacidaemia in study 2. Appropriate amino acid infusions were used to blunt insulin-induced hypoaminoacidaemia under eukaliaemic and euglycaemic clamp conditions or to create hyperaminoacidaemia and maintain this state under insulin treatment. In the basal state βOH (P < 0·05), mid lactation) and FFA (P < 0·05 early lactation) were higher during lactation than in the dry period. Plasma L was unmodified. Insulin infusion always resulted in a decrease in βOH levels (P < 0·05). In both studies, the change in βOH concentration as a function of changes in plasma insulin (an index of insulin sensitivity) was greater during early lactation than in the dry period (P < 0·05); this was also the case of mid lactation in study 1. Insulin infusion decreased plasma FFA during early lactation and in the dry period in study 1 (P < 0·05), and there was a trend for insulin sensitivity to be greater during early lactation. In both studies insulin infusion did not affect plasma L in lactating goats whereas plasma L was increased in dry animals (P < 0·05). The results demonstrate that during early lactation, compared with the dry period, there is an increased ability of insulin to lower βOH and FFA concentrations. These effects were not altered by increasing plasma amino acid concentrations during insulin infusion.


1998 ◽  
Vol 1998 ◽  
pp. 179-179
Author(s):  
H. M. Miller ◽  
W. T. Dixon ◽  
G. R. Foxcroft ◽  
F. X. Aherne

Lactogenesis is triggered by a rapid decline in plasma progesterone concentration combined with a peak in plasma prolactin concentration; in mice, there is a concurrent loss of mammary progesterone receptors (Haslam and Shyamala, 1980). The aims of this experiment were to determine the pattern of change of progesterone receptor and prolactin receptor mRNA during late gestation and early lactation and to determine whether abundance of mRNA for the two receptors are related to each other, to plasma concentrations of progesterone and prolactin or to piglet performance.


1970 ◽  
Vol 24 (4) ◽  
pp. 1071-1081 ◽  
Author(s):  
T. G. Taylor ◽  
J. J. Waring ◽  
R. K. Scougall

1. The changes occurring in the free amino acids of the plasma of laying hens in relation to egg formation have been investigated in fed and starved hens in three experiments, each with eight birds.2. The mean concentrations of most amino acids and of the totals were higher at night than in the morning.3. In general, egg formation was associated with increases in the concentrations of non- essential and decreases in the concentrations of essential amino acids. Cystine and glutamic acid tended to behave like the essential amino acids.4. After 40 h starvation seven amino acids, particularly serine, histidine and lysine, in- creased in concentration and only three, proline, ornithine and arginine, decreased significantly.5. When eight cocks were injected with oestrogen most of the amino acids increased in con-centration. The essential amino acids (with the exception of phenylalanine), serine, proline, cystine and ornithine showed the greatest increases.6. The results are discussed in relation to the possibility that the voluntary food intake of hens may be influenced by changes in the plasma levels of one or more essential amino acids associated with the synthesis of egg albumen. Arginine appeared to be the only amino acid that might possibly fulfil this role.7. It was concluded that investigations of changes in the free amino acids of hen plasma are unlikely to provide a useful approach to a study of the amino acid requirements or the nutritive value of particular proteins for egg production.


2020 ◽  
Vol 150 (12) ◽  
pp. 3224-3230
Author(s):  
Madeleine A Ennis ◽  
Anna-Joy Ong ◽  
Kenneth Lim ◽  
Ronald O Ball ◽  
Paul B Pencharz ◽  
...  

ABSTRACT Background Phenylalanine and tyrosine (referred to as total aromatic amino acids; TAAs) are essential for protein synthesis, and are precursors for important catecholamines. Current estimated average requirement (EAR) recommendations for TAA during pregnancy are 36 mg·kg−1·d−1, and has not been experimentally determined. Objectives The aim was to determine TAA requirements (dietary phenylalanine in the absence of tyrosine) during early and late gestation using the indicator amino acid oxidation (IAAO, with L-[1-13C]leucine) technique. Methods Nineteen healthy pregnant women (age 22–38 y) were studied at a range of phenylalanine intakes (5 to 100 mg·kg−1·d−1) in early (13–19 wk) and/or late (33–39 wk) pregnancy for a total of 51 study days. Graded test intakes were provided as 8 hourly isonitrogenous and isocaloric meals. Breath samples were collected for 13C enrichment analysis on an isotope ratio mass spectrometer. A plasma sample was collected and analyzed for phenylalanine and tyrosine concentrations on an amino acid analyzer. The TAA requirement in early and late pregnancy was calculated using 2-phase linear regression crossover analysis that identified breakpoints in 13CO2 production (the requirement) in response to phenylalanine intakes. Results TAA requirement during early pregnancy was 44 mg·kg−1·d−1 (95% CI: 28.3, 58.8) and during late pregnancy was 50 mg·kg−1·d−1 (95% CI: 36.1, 63.1). In early and late pregnancy, plasma phenylalanine and tyrosine concentrations rose linearly in response to graded phenylalanine intakes. Conclusions Our results suggest that the current EAR of 36 mg·kg−1·d−1 for TAAs is underestimated. When compared with results previously determined in nonpregnant adults, early pregnancy requirements were similar (43 compared with 44 mg·kg−1·d−1, respectively). During late pregnancy, a 14% higher TAA requirement was observed when compared with early pregnancy. The results from this study have potential implications for creating gestation stage-specific TAA recommendations.


1998 ◽  
Vol 1998 ◽  
pp. 179-179
Author(s):  
H. M. Miller ◽  
W. T. Dixon ◽  
G. R. Foxcroft ◽  
F. X. Aherne

Lactogenesis is triggered by a rapid decline in plasma progesterone concentration combined with a peak in plasma prolactin concentration; in mice, there is a concurrent loss of mammary progesterone receptors (Haslam and Shyamala, 1980). The aims of this experiment were to determine the pattern of change of progesterone receptor and prolactin receptor mRNA during late gestation and early lactation and to determine whether abundance of mRNA for the two receptors are related to each other, to plasma concentrations of progesterone and prolactin or to piglet performance.


Author(s):  
Omer Tammo ◽  
Hacer Uyanikoglu ◽  
İsmail Koyuncu

Aim and Objective: This study aimed to explore the plasma free amino acid (FAA) and carnitine levels in pregnant women with cesarean scar pregnancy (CSP), and to compare them with those of healthy pregnant women. Materials and Methods: This prospective and randomized controlled study was conducted in patients admitted to Harran University Medical Faculty Hospital Obstetrics Clinic between January 2018 and January 2019. A total of 60 patients were included in the study, and the patients were divided into two groups: CSP group (n = 30) and healthy pregnant group as the control group (n = 30). The blood samples were taken from the participants between 7 - 12 weeks of gestation. Twentyseven carnitines and their esters and 14 FAAs were analysed by liquid chromatography – mass spectrometry (LC-MS/MS). Results: The mean plasma concentrations of some carnitines, including C2, C5, C5-OH, C5-DC, C6, C8-1, C12, C14, C14- 1, C14-2, C16, C16-1, C18, and C18-1 were significantly higher in CSP group than in the control group. However, other carnitines, including C0, C3, C4, C4-DC, C5-1, C6-DC, C8, C8-DC, C10, C10-1, C18-1-OH, and C18-2 were similar in both groups. The plasma levels of some FAAs, including Methyl Glutaryl, Leu, Met, Phe, Arg, Orn, and Glu values were significantly higher in CSP group than in the control group. However, there was no statistically significance in other FAA levels, including Val, Asa, Tyr, Asp, Ala, Cit, and Gly between the two groups. Additionally, Pearson’s correlation analysis showed that there were significantly positive correlations between many FAA and carnitine values. Conclusion: Since several plasma carnitine and FAA levels were higher in CSP group than in the control group, we think that scar pregnancy increases metabolic need for myometrial invasion. Also, we think that these results may be useful in clinical practice for CSP diagnosis.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 192-192
Author(s):  
Alice Brandão ◽  
Reinaldo F Cooke ◽  
Kelsey Schubach ◽  
Bruna Rett ◽  
Osvaldo Souza ◽  
...  

Abstract This experiment compared performance and physiological responses of the offspring from cows supplemented with Ca salts of soybean oil (CSSO) or prilled saturated fat (CON) during late gestation. Non-lactating, pregnant Angus × Hereford cows (n = 104) that conceived during the same fixed-time artificial insemination protocol, using semen from 2 sires, were used in this experiment. Cows were ranked by pregnancy sire, body weight (BW), and body condition score (BCS). On d 180 of gestation (d -15), cows were randomly assigned to receive (dry matter basis) 415 g of soybean meal per cow daily in addition to 1) 195 g/cow daily of CSSO (n = 52) or 2) 170 g/cow daily of CON (n = 52). Cows were maintained in 2 pastures (26 cows/treatment per pasture), and received daily 12.7 kg/cow (dry matter basis) of grass-alfalfa hay. From d 0 until calving, cows were segregated into 1 of 24 feeding pens thrice weekly and received treatments individually. Cow BW and BCS were recorded, and blood samples were collected on d -15 of the experiment and within 12 h after calving. Calf BW was also recorded and blood sample collected within 12 h of calving. Calves were weaned on d 290 of the experiment, preconditioned for 35 d (d 291 to 325), and transferred to a feedyard where they remained until slaughter. Upon calving, CSSO cows and calves had greater (P &lt; 0.01) plasma concentrations of linoleic acid and total ω - 6 FA compared with CON cohorts. No differences in calf birth BW, weaning BW, and final preconditioning BW were noted (P ≥ 0.36) between treatments. Average daily gain and final BW in the feedlot were greater (P ≤ 0.05) in steers from CSSO cows compared with CON. The incidence of calves diagnosed with BRD that required a second antimicrobial treatment was less (P = 0.03) in calves from CSSO cows, resulting in reduced (P = 0.05) need of treatments to regain health compared with CON (Table 5). Upon slaughter, longissimus muscle area was greater (P = 0.03) in calves from CSSO cows compared with CON. Collectively, these results suggest that supplementing CSSO to late-gestating beef cows stimulated programming effects on postnatal offspring growth and Page 2 of 15 For Peer Review health. Therefore, supplementing late-gestating beef cows with CSSO appears to optimize offspring welfare and productivity in beef production systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonia Yun Liu ◽  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Peter H. Selle

AbstractThe prime purpose of this review is to explore the pathways whereby progress towards reduced-crude protein (CP) diets and sustainable chicken-meat production may be best achieved. Reduced-CP broiler diets have the potential to attenuate environmental pollution from nitrogen and ammonia emissions; moreover, they have the capacity to diminish the global chicken-meat industry’s dependence on soybean meal to tangible extents. The variable impacts of reduced-CP broiler diets on apparent amino acid digestibility coefficients are addressed. The more accurate identification of amino acid requirements for broiler chickens offered reduced-CP diets is essential as this would diminish amino acid imbalances and the deamination of surplus amino acids. Deamination of amino acids increases the synthesis and excretion of uric acid for which there is a requirement for glycine, this emphasises the value of so-called “non-essential” amino acids. Starch digestive dynamics and their possible impact of glucose on pancreatic secretions of insulin are discussed, although the functions of insulin in avian species require clarification. Maize is probably a superior feed grain to wheat as the basis of reduced-CP diets; if so, the identification of the underlying reasons for this difference should be instructive. Moderating increases in starch concentrations and condensing dietary starch:protein ratios in reduced-CP diets may prove to be advantageous as expanding ratios appear to be aligned to inferior broiler performance. Threonine is specifically examined because elevated free threonine plasma concentrations in birds offered reduced-CP diets may be indicative of compromised performance. If progress in these directions can be realised, then the prospects of reduced-CP diets contributing to sustainable chicken-meat production are promising.


Sign in / Sign up

Export Citation Format

Share Document