scholarly journals Volatile Fatty Acids in Ruminal Fluid Can Be Used to Predict Methane Yield of Dairy Cows

Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1006 ◽  
Author(s):  
S. Richard O. Williams ◽  
Murray. C. Hannah ◽  
Joe L. Jacobs ◽  
William J. Wales ◽  
Peter J. Moate

The dry matter intake (DMI) of forage-fed cattle can be used to predict their methane emissions. However, many cattle are fed concentrate-rich diets that decrease their methane yield. A range of equations predicting methane yield exist, but most use information that is generally unavailable when animals are fed in groups or grazing. The aim of this research was to develop equations based on proportions of ruminal volatile-fatty-acids to predict methane yield of dairy cows fed forage-dominant as well as concentrate-rich diets. Data were collated from seven experiments with a total of 24 treatments, from 215 cows. Forage in the diets ranged from 440 to 1000 g/kg. Methane was measured either by open-circuit respiration chambers or a sulfur hexafluoride (SF6) technique. In all experiments, ruminal fluid was collected via the mouth approximately four hours after the start of feeding. Seven prediction equations were tested. Methane yield (MY) was equally best predicted by the following equations: MY = 4.08 × (acetate/propionate) + 7.05; MY = 3.28 × (acetate + butyrate)/propionate + 7.6; MY = 316/propionate + 4.4. These equations were validated against independent published data from both dairy and beef cattle consuming a wide range of diets. A concordance of 0.62 suggests these equations may be applicable for predicting methane yield from all cattle and not just dairy cows, with root mean-square error of prediction of 3.0 g CH4/kg dry matter intake.

2014 ◽  
Vol 54 (10) ◽  
pp. 1757 ◽  
Author(s):  
S. R. O. Williams ◽  
P. J. Moate ◽  
M. H. Deighton ◽  
M. C. Hannah ◽  
W. J. Wales

Methane (CH4) emissions from dairy cows are technically difficult and expensive to measure. Recently, some researchers have found correlations between the concentrations of specific fatty acids in milk fat and the CH4 emissions from cows that could obviate the need for direct measurement. In this research, data on individual cow CH4 emissions and concentration of caprylic acid (C8:0) and total C18 fatty acids in milk were collated from eight experiments involving 27 forage-based diets and 246 Holstein-Friesian dairy cows. Linear regressions between CH4 and both C8:0 and total C18 in milk were produced for published data and used to calculate 95% prediction regions for a new observation. The proportion of observed methane emissions from eight experiments that fell outside the 95% prediction region was 27.6% for the C8:0 model and 26.3% for the total C18 model. Neither model predicted CH4 emission well with Lin’s coefficient of concordance of less than 0.4 and the Nash–Sutcliffe efficiency coefficient of approximately zero for both the C8:0 and total C18 models. In addition, general linear model analysis showed significant differences between experiments in their intercepts (P < 0.001) and slopes (P < 0.001). It is concluded that the relationships tested cannot be used to accurately predict CH4 emissions when cows are fed a wide range of diets.


2019 ◽  
Vol 59 (3) ◽  
pp. 506
Author(s):  
V. M. Russo ◽  
B. J. Leury ◽  
E. Kennedy ◽  
M. C. Hannah ◽  
M. J. Auldist ◽  
...  

The effects of a major dietary change on ruminal fluid pH, volatile fatty acid (VFA), lactate and ammonia concentrations, dry matter intake (DMI) and milk yield were measured in 32 dairy cows in late lactation. All cows were initially fed 100% lucerne hay cubes and were then gradually introduced to a diet with wheat comprising 40% of total dry matter (DM) and lucerne hay cubes, the remainder. Wheat was gradually substituted for lucerne via one of four strategies, (1) in six small increments (each 6.7% of total DM) over 6 days; (2) in six small increments (each 6.7% of total DM) over 11 days; (3) in three large increments (each 13.3% of total DM) over 6 days; or (4) in three large increments (each 13.3% of total DM) over 11 days. The introduction of wheat in six small increments resulted in a lower daily minimum ruminal fluid pH (pH 5.95) when compared with using three large increments (pH 6.05). Despite this difference none of the treatments exhibited a ruminal fluid pH that would have compromised ruminal function, nor were there differences in DMI (19.7 kg DM/cow.day) or milk yield (16.0 kg/cow.day). Additionally, there were no differences between ruminal fluid VFA, lactate or ammonia concentrations. It is speculated that the properties of the lucerne cubes, including a high buffering capacity, helped the ruminal contents resist the pronounced declines in pH often seen with the fermentation of large amounts of wheat. Under the conditions of this experiment the wheat adaptation strategies used did not lead to any critical differences in rumen parameters. These results suggest that changes to rumen function are driven not only by the characteristics of the concentrate being introduced but also by those of the forage.


2007 ◽  
Vol 87 (4) ◽  
pp. 591-600 ◽  
Author(s):  
H. V. Petit ◽  
C. Benchaar

A total of 153 lactating Holstein cows averaging 695 kg body weight (standard error = 11) were allotted 6 wk before the expected date of parturition to 51 groups of three cows blocked for similar calving dates to determine the effects of feeding different profiles of fatty acids from 6 wk before calving on feed intake, milk production and composition, conception rate, and embryo mortality in the subsequent lactation. Cows within each block were assigned to one of the three isoenergetic total mixed diets based on either whole flaxseed (FLA), Megalac® (MEG) or micronized soybeans (SOY). Diets were fed for ad libitum intake from 6 wk before calving to day 50 of pregnancy for pregnant cows, or 120 d postpartum for those not diagnosed pregnant after artificial insemination (AI). Diet had no effect on prepartum dry matter intake but postpartum intake was 9% higher for cows fed FLA than for those fed MEG or SOY. Milk production and fat concentration were similar among treatments. Conception rate at first AI was higher for cows fed FLA (54.3%) than for those fed SOY (26.9%). Conception rate at first AI was similar for cows fed FLA and MEG and it was similar for those fed MEG and SOY. Cows fed MEG tended to have higher embryo mortality than those fed FLA (41.7 vs. 10.5%, P = 0.06) and SOY (41.7 vs. 0%, P = 0.08) at first AI and there was no difference among treatments at second AI. Total embryo mortality was similar for cows fed FLA and SOY but cows fed MEG had higher total embryo mortality than those fed SOY (35.3 vs. 9.1%) and there was a trend (P = 0.07) when MEG was compared with FLA (35.3 vs. 9.5%). These data suggest that feeding flaxseed during the prepartum period has little effect on production in the subsequent lactation but could improve fertility of dairy cows. Key words: Dairy, flaxseed, milk production, reproduction, fatty acids


2016 ◽  
Vol 56 (3) ◽  
pp. 472 ◽  
Author(s):  
L. Samal ◽  
L. C. Chaudhary ◽  
N. Agarwal ◽  
D. N. Kamra

Four fistulated adult Murrah buffaloes were fed on a basal diet consisting of wheat straw and concentrate mixture in a 4 × 4 Latin square design to study the effects of feeding plants containing secondary metabolites on rumen metabolites and methanogen diversity. The four groups were Control (no additive), Mix-1 (ajwain oil and lemon grass oil in a 1 : 1 ratio @ 0.05% of dry matter intake), Mix-2 (garlic and soapnut in a 2 : 1 ratio @ 2% of dry matter intake) and Mix-3 (garlic, soapnut, harad and ajwain in a 2 : 1 : 1 : 1 ratio @ 1% of dry matter intake). In each phase of 30 days’ duration, after 19 days of feeding, rumen liquor was sampled for two consecutive days at 0, 2, 4, 6 and 8 h post-feeding, whereas rumen content was sampled at 0 h feeding. The pH of the rumen liquor was recorded at every collection and then the rumen liquor of every collection was pooled day-wise and animal-wise. These pooled samples were used for estimation of rumen metabolites like ammonia, lactic acid and volatile fatty acids. Microscopic counting of protozoa was done in both 0 h and pooled samples of rumen liquor. Rumen contents collected from different locations of rumen were processed for enzyme estimation. The rumen contents were squeezed and the liquid portion was used for DNA isolation, which was further processed to determine methanogen diversity. Daily intake of feed was similar (P > 0.05) in all the four groups. The ammonia-N concentration and ciliate protozoa population were reduced significantly in the treatment groups supplemented with additives. Rumen pH, lactic acid, volatile fatty acids and enzyme activities were not affected (P > 0.05) by feeding of any of these additives. Methanogenic diversity comparison was made between the Control and Mix-1 group. The basic local alignment search tool (BLAST) analysis of the 133 (44 from the Control group and 89 from the Mix-1 group) sequences showed similarity of the sequences of rumen archaea by up to 97% to the known sequences of rumen methanogens. The sequences with minimum length of 750 bp were selected for phylogenetic analysis. Per cent identity of these sequences with that of the available nearest neighbour as calculated by MEGA 5.03 software showed identity of the clones in the range of 88–97%. The clones were similar with Methanobrevibacter smithii ATCC 35061, uncultured Methanobrevibacter sp. clone MEME95 and M. ruminantium M1. Overall, feeding of any of these feed additives to fistulated buffaloes did not affect feed intake, rumen pH, or rumen metabolites except ammonia and enzyme profile. Methanogen diversity showed the possibility of Methanobrevibacter as the major methanogen in buffalo rumen liquor.


2010 ◽  
Vol 90 (2) ◽  
pp. 115-127 ◽  
Author(s):  
H V Petit

Flaxseed contains approximately 55% of total fatty acids of the oil as ?-linolenic acid and is rich in lignans, which are strong antioxidants. Diets rich in omega-3 fatty acids and antioxidants are known to have beneficial effects on human health such as a decrease in the incidence of cancer, cardiovascular diseases, hypertension, and arthritis. Flaxseed could then be an interesting natural feed to consider for changing milk composition. Cyanogenic glycosides (linustatin and neolinustatin) are present in flaxseed, but the concentration of hydrocyanic acid is very low in milk and ruminal fluid of cows fed flaxseed products. In general, feeding up to 15% of the total dry matter as whole flaxseed has a limited effect on dry matter intake. Heat treatments such as micronization and extrusion have no effect on dry matter intake and the effect of formaldehyde treatment on feed intake is unclear. The effects of flaxseed supplementation on milk production of dairy cows in the early stage of lactation have been neutral. Diet supplementation with whole flaxseed has had no effect on milk yield and composition of dairy cows in the mid or late stages of lactation. Physical processing of flaxseed increased milk production although heat treatment did not. Results on the effect of flaxseed processing on overall milk fat concentration have been controversial, but heat and formaldehyde treatments had no effect. Flaxseed supplementation had no effect on milk fat and protein concentrations, and processing of flaxseed had little effect. The extent of change in the concentration of fatty acids in milk is generally proportional to the level of inclusion of flaxseed in the diet. In conclusion, feeding flaxseed does not affect milk production or composition in the large majority of studies, but its long-term effects on health of cows and productivity still need to be determined.Key words: Review, flax, dairy


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 304 ◽  
Author(s):  
Yiguang Zhao ◽  
Fuguang Xue ◽  
Dengke Hua ◽  
Yue Wang ◽  
Xiaohua Pan ◽  
...  

As the co-enzyme of pyruvate formate-lyase under ruminal anaerobic condition, thiamine plays a critical role in carbohydrate metabolism in dairy cows. The objective of this study was to investigate the impacts of thiamine supplementation on ruminal carbohydrate-active enzymes. Twelve Holstein dairy cows were randomly assigned into three dietary treatments: control diet (CON; 20% starch, dry matter (DM) basis), high-concentrate diet (HC; 33.2% starch, DM basis) and a high-concentrate diet supplemented with 180 mg thiamine/kg DM (HCT; 33.2% starch, DM basis). Dry matter intake and milk production were recorded for 21 days. Rumen fluid samples were collected, and ruminal pH and volatile fatty acids (VFAs) were measured. The metagenome sequencing technique was used to detect the genes in ruminal microorganisms and identify putative carbohydrate-active enzymes. The total abundances of carbohydrate-active enzymes and fiber-degrading enzymes were both reduced by HC with no effect on starch-degrading enzymes compared with CON. However, the fiber-degrading enzymes and starch-degrading enzymes were both increased after thiamine supplementation. These results indicated that 180 mg thiamine /kg DM might effectively improve rumen carbohydrate metabolism through increasing the abundance of ruminal carbohydrate-active enzymes and consequently balanced the rumen volatile fatty acids and rumen pH, providing a practical strategy in preventing subacute ruminal acidosis in cows offered HC.


1977 ◽  
Vol 57 (3) ◽  
pp. 601-603 ◽  
Author(s):  
D. R. McKNIGHT ◽  
G. K. MacLEOD

Lactating Holstein cows fed either whole plant faba bean silage or grass–legume silage as sole forage produced similar yields of milk of comparable composition. Dry matter intake and body weight gain were greater for cattle fed faba bean silage, but apparent digestibility of dry matter, protein and energy, and proportions of rumen volatile fatty acids were similar.


1997 ◽  
Vol 78 (4) ◽  
pp. 563-581 ◽  
Author(s):  
A. Bannink ◽  
H. De Visser ◽  
A. M. Van Vuuren

Mechanistic rumen models of Baldwin (1995), Danfæer (1990) and Dijkstra et al. (1992) were compared on identical inputs that were derived from trials with lactating dairy cows fed on grass herbage. Consistent differences were detected between models and between predicted and observed outputs. None of the models seemed to predict all nutrient flows best. The models particularly differed in the representation of microbial metabolism: degradation of insoluble substrate, fermentation of substrate into volatile fatty acids, and incorporation of substrate into microbial matter. Differences amongst models in the prediction of these processes compensated for each other and consequently all models predicted the duodenal flow of non-NH3 N, microbial N and organic matter reasonably well. Large differences remained in the prediction of individual nutrient flows, however, and it was stressed that in order to enhance prediction of the profile of nutrient flows, the mechanisms of microbial metabolism need to be tested on their ability to describe the intraruminal transactions. However, this requires more-detailed information on individual nutrient flows and on the microbial or non-microbial origin of duodenal contents. Parameter inputs for physical and chemical feed properties were identified that are improperly defined in extant models or susceptible to error. The description of these feed characteristics needs to be developed further and become identifiable for a wide range of dietary conditions.


Sign in / Sign up

Export Citation Format

Share Document