Effects of plants containing secondary metabolites as feed additives on rumen metabolites and methanogen diversity of buffaloes

2016 ◽  
Vol 56 (3) ◽  
pp. 472 ◽  
Author(s):  
L. Samal ◽  
L. C. Chaudhary ◽  
N. Agarwal ◽  
D. N. Kamra

Four fistulated adult Murrah buffaloes were fed on a basal diet consisting of wheat straw and concentrate mixture in a 4 × 4 Latin square design to study the effects of feeding plants containing secondary metabolites on rumen metabolites and methanogen diversity. The four groups were Control (no additive), Mix-1 (ajwain oil and lemon grass oil in a 1 : 1 ratio @ 0.05% of dry matter intake), Mix-2 (garlic and soapnut in a 2 : 1 ratio @ 2% of dry matter intake) and Mix-3 (garlic, soapnut, harad and ajwain in a 2 : 1 : 1 : 1 ratio @ 1% of dry matter intake). In each phase of 30 days’ duration, after 19 days of feeding, rumen liquor was sampled for two consecutive days at 0, 2, 4, 6 and 8 h post-feeding, whereas rumen content was sampled at 0 h feeding. The pH of the rumen liquor was recorded at every collection and then the rumen liquor of every collection was pooled day-wise and animal-wise. These pooled samples were used for estimation of rumen metabolites like ammonia, lactic acid and volatile fatty acids. Microscopic counting of protozoa was done in both 0 h and pooled samples of rumen liquor. Rumen contents collected from different locations of rumen were processed for enzyme estimation. The rumen contents were squeezed and the liquid portion was used for DNA isolation, which was further processed to determine methanogen diversity. Daily intake of feed was similar (P > 0.05) in all the four groups. The ammonia-N concentration and ciliate protozoa population were reduced significantly in the treatment groups supplemented with additives. Rumen pH, lactic acid, volatile fatty acids and enzyme activities were not affected (P > 0.05) by feeding of any of these additives. Methanogenic diversity comparison was made between the Control and Mix-1 group. The basic local alignment search tool (BLAST) analysis of the 133 (44 from the Control group and 89 from the Mix-1 group) sequences showed similarity of the sequences of rumen archaea by up to 97% to the known sequences of rumen methanogens. The sequences with minimum length of 750 bp were selected for phylogenetic analysis. Per cent identity of these sequences with that of the available nearest neighbour as calculated by MEGA 5.03 software showed identity of the clones in the range of 88–97%. The clones were similar with Methanobrevibacter smithii ATCC 35061, uncultured Methanobrevibacter sp. clone MEME95 and M. ruminantium M1. Overall, feeding of any of these feed additives to fistulated buffaloes did not affect feed intake, rumen pH, or rumen metabolites except ammonia and enzyme profile. Methanogen diversity showed the possibility of Methanobrevibacter as the major methanogen in buffalo rumen liquor.

2018 ◽  
Vol 58 (6) ◽  
pp. 1056 ◽  
Author(s):  
L. Samal ◽  
L. C. Chaudhary ◽  
N. Agarwal ◽  
D. N. Kamra

Twenty growing buffalo calves were fed on a basal diet consisting of wheat straw and concentrate mixture in a randomised block design, to study the effect of feeding phytogenic feed additives on growth performance, nutrient utilisation and methanogenesis. The four groups were viz. control (no additive), Mix-1 (ajwain oil and lemon grass oil in 1 : 1 ratio @ 0.05% of dry matter intake), Mix-2 (garlic and soapnut in 2 : 1 ratio @ 2% of DMI) and Mix-3 (garlic, soapnut, harad and ajwain in 2 : 1 : 1 : 1 ratio @ 1% of DMI). The experimental feeding was continued for a period of 8 months. A metabolism trial was conducted after 130 days of feeding. Methane emission from animals was measured by open-circuit indirect respiration calorimeter. The feed conversion efficiency was higher by 9.5% in Mix-1, 7% in Mix-2 and 10.2% in Mix-3 group than in control. The digestibility of nutrients was similar except crude protein, which was improved (P < 0.05) in treatment groups. All buffalo calves were in positive nitrogen balance. Comparative faecal nitrogen decreased and urinary nitrogen increased in all the supplemented groups compared with in the control group. Methane emission (in terms of L/kg dry matter intake and L/kg digestible dry matter intake) was reduced by 13.3% and 17.8% in Mix-1, 10.9% and 13.5% in Mix-2 and 5.1% and 9.8% in Mix-3 groups as compared with control. When expressed in L/kg organic matter intake and L/kg digestible organic matter intake, methane production was reduced by 13.3% and 16.7% in Mix-1, 10.9% and 12.9% in Mix-2 and 5.1% and 8.4% in Mix-3 groups compared with the control group. These feed additives inhibited methane emission without adversely affecting feed utilisation by the animals. The faecal energy, urinary energy and methane energy losses were not affected (P > 0.05) due to feeding of these additives. Further, long-term feeding experiments should be conducted on a large number of animals to validate these effects before they can be recommended for use at a field level.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2437
Author(s):  
Mingming Zhu ◽  
Rongqing Xie ◽  
Liangyin Chen ◽  
Minghong You ◽  
Wenlong Gou ◽  
...  

This study aimed to investigate the effect of oat silage treated with a low-temperature-tolerant lactic acid bacteria (LAB) inoculant on milk yield and the quality of lactating yaks. Oat silages were prepared in big round bales, treated without (control) or with a low-temperature-tolerant LAB inoculant (a mixture of Lactobacillus plantarum BP18, Pediococcus pentosaceus HS1 and Lactobacillus buchneri LP22; the application rate of 105 cfu/g on a fresh matter basis). Eighteen lactating yaks were divided into nine pairs with a similar milk yield. Each pair of yaks was randomly allocated to the control or LAB-inoculated silage treatment. The inoculated silage increased the dry matter intake and the total volatile fatty acid (mainly acetate, propionate and butyrate) in rumen fluid compared with the control. The inoculated silage also enhanced the yield of yak milk with high contents of total N, fat and lactose. In addition, high levels of essential amino acids (Thr, Leu and Phe), polyunsaturated fatty acids and low saturated fatty acids were observed in milk when lactating yaks were fed with the inoculated silage. Therefore, inoculation with a low-temperature-tolerant LAB during ensiling could promote the milk yield of lactating yaks by enhancing dry matter intake and ruminal fermentation.


2017 ◽  
Vol 16 (7) ◽  
pp. 1566-1575 ◽  
Author(s):  
Jianbiao Luo ◽  
Chaminda Senaka Ranadheera ◽  
Stuart King ◽  
Craig Evans ◽  
Surinder Baines

Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1006 ◽  
Author(s):  
S. Richard O. Williams ◽  
Murray. C. Hannah ◽  
Joe L. Jacobs ◽  
William J. Wales ◽  
Peter J. Moate

The dry matter intake (DMI) of forage-fed cattle can be used to predict their methane emissions. However, many cattle are fed concentrate-rich diets that decrease their methane yield. A range of equations predicting methane yield exist, but most use information that is generally unavailable when animals are fed in groups or grazing. The aim of this research was to develop equations based on proportions of ruminal volatile-fatty-acids to predict methane yield of dairy cows fed forage-dominant as well as concentrate-rich diets. Data were collated from seven experiments with a total of 24 treatments, from 215 cows. Forage in the diets ranged from 440 to 1000 g/kg. Methane was measured either by open-circuit respiration chambers or a sulfur hexafluoride (SF6) technique. In all experiments, ruminal fluid was collected via the mouth approximately four hours after the start of feeding. Seven prediction equations were tested. Methane yield (MY) was equally best predicted by the following equations: MY = 4.08 × (acetate/propionate) + 7.05; MY = 3.28 × (acetate + butyrate)/propionate + 7.6; MY = 316/propionate + 4.4. These equations were validated against independent published data from both dairy and beef cattle consuming a wide range of diets. A concordance of 0.62 suggests these equations may be applicable for predicting methane yield from all cattle and not just dairy cows, with root mean-square error of prediction of 3.0 g CH4/kg dry matter intake.


1977 ◽  
Vol 57 (3) ◽  
pp. 601-603 ◽  
Author(s):  
D. R. McKNIGHT ◽  
G. K. MacLEOD

Lactating Holstein cows fed either whole plant faba bean silage or grass–legume silage as sole forage produced similar yields of milk of comparable composition. Dry matter intake and body weight gain were greater for cattle fed faba bean silage, but apparent digestibility of dry matter, protein and energy, and proportions of rumen volatile fatty acids were similar.


1994 ◽  
Vol 122 (1) ◽  
pp. 145-150 ◽  
Author(s):  
P. A. Martin ◽  
D. G. Chamberlain ◽  
S. Robertson ◽  
D. Hirst

SUMMARYIn each of two experiments, eight silages supplemented with concentrates containing a high proportion of either starch or digestible fibre were given to rumen-cannulated sheep. The silages constituted c. 65% of the total dry matter and differed widely in chemical composition, reflecting differences in the extent of fermentation in the silo.Rumen pH was lower (P < 0·01 and P < 0·001 for Expts 1 and 2 respectively) and the concentration of total volatile fatty acids (VFA) in the rumen was higher (P < 0·001 for Expt 2) for the starchy concentrate. Silages differed in their effects on ruminal proportions of acetate (P < 0·001 and P < 0·01 for Expts 1 and 2 respectively) and, inversely, of propionate (P < 0·001 for Expt 1). There was evidence of a strong relationship between the molar proportion of propionate in the rumen and the concentration of lactic acid in the silage. The results indicate that the production of propionate during the metabolism of silage lactic acid by the rumen microbial population was the predominant influence on rumen fermentation pattern.It is suggested that this relationship is the basis of some of the differences in milk production reported for silages showing restricted as opposed to extensive fermentation.


1994 ◽  
Vol 59 (2) ◽  
pp. 217-222 ◽  
Author(s):  
M. D. Carro ◽  
A. R. Mantecón ◽  
I. A. Wright ◽  
I. J. Gordon

AbstractEffects of time of supplementation on forage intake, nutrient apparent digestibility and rumen fermentation were studied with 12 mature castrated male sheep (wethers) offered grass hay from 16.30 h to 09.30 h and supplemented with a cereal-based concentrate given at either 09.30 or 16.00 h. Voluntary intake of hay organic matter (OM) was decreased by feeding the concentrate (P< 0·01). Offering concentrate at 09.30 h after hay was available, increased intake of hay and total OM compared with offering it at 16.00 h before hay was available (P< 0·05). Daily pattern of hay intake was not changed when concentrate was offered at 09.30 h compared with feeding hay alone, but concentrate given at 16.00 h resulted in a lower hay intake between 16.30 and 18.00 h. Sheep offered concentrate at 09.30 h had higher rumen ammonia levels than those offered concentrate at 16.00 h, but there were no differences in the apparent digestibility of the nutrients, rumen pH and molar proportions of the main volatile fatty acids. There were also no differences between groups in the blood plasma concentrations of 3-hydroxybutyrate (30HB), nonesterified fatty acids (NEFA) and glucose. It is concluded that feeding supplement after rather than before a period of intake of forage or a bout of grazing may offer a means of minimizing reduction of forage intake as a consequence of feeding concentrate.


1929 ◽  
Vol 19 (4) ◽  
pp. 649-655 ◽  
Author(s):  
V. Subrahmanyan

Methods for extraction, concentration and determination of minute quantities of soluble carbohydrates, lactic acid and volatile fatty acids have been described. Different factors affecting the accuracy of the determinations have been studied and corrections, where necessary, have been suggested.


Sign in / Sign up

Export Citation Format

Share Document