scholarly journals Environmental Surveillance and Characterization of Antibiotic Resistant Staphylococcus aureus at Coastal Beaches and Rivers on the Island of Hawaiʻi

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 980
Author(s):  
Tyler J. Gerken ◽  
Marilyn C. Roberts ◽  
Philip Dykema ◽  
Geoff Melly ◽  
Darren Lucas ◽  
...  

Staphylococcus aureus are human facultative pathogenic bacteria and can be found as contaminants in the environment. The aim of our study was to determine whether methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolated from coastal beach and river waters, anchialine pools, sand, and wastewater on the island of Hawaiʻi, Hawaiʻi, are a potential health risk. Samples were collected from three regions on Hawaiʻi Island from July to December 2020 during the COVID-19 pandemic and were characterized using whole-genome sequencing (WGS). From WGS data, multilocus sequence typing (MLST), SCCmec type, antimicrobial resistance genes, virulence factors, and plasmids were identified. Of the 361 samples, 98.1% were positive for Staphylococcus spp. and 7.2% were S. aureus positive (n = 26); nine MRSA and 27 MSSA strains were characterized; multiple isolates were chosen from the same sample in two sand and seven coastal beach water samples. The nine MRSA isolates were multi-drug resistant (6–9 genes) sequence type (ST) 8, clonal complex (CC) 8, SCCmec type IVa (USA300 clone), and were clonally related (0–16 SNP differences), and carried 16–19 virulence factors. The 27 MSSA isolates were grouped into eight CCs and 12 STs. Seventy-eight percent of the MSSA isolates carried 1–5 different antibiotic resistance genes and carried 5–19 virulence factors. We found S. aureus in coastal beach and river waters, anchialine pools, and sand at locations with limited human activity on the island of Hawaiʻi. This may be a public health hazard.

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 430
Author(s):  
Wichai Santimaleeworagun ◽  
Praewdow Preechachuawong ◽  
Wandee Samret ◽  
Tossawan Jitwasinkul

Methicillin-resistant Staphylococcus aureus (MRSA) is mostly found in Thailand in the hospital as a nosocomial pathogen. This study aimed to report the genetic characterization of a clinical community-acquired MRSA (CA-MRSA) isolate collected from hospitalized patients in Thailand. Among 26 MRSA isolates, S. aureus no. S17 preliminarily displayed the presence of a staphylococcal cassette chromosome mec (SCCmec) type IV pattern. The bacterial genomic DNA was subjected to whole-genome sequencing. Panton–Valentine leukocidin (PVL) production, virulence toxins, and antibiotic resistance genes were identified, and multi-locus sequence typing (MLST) and spa typing were performed. The strain was matched by sequence to MLST type 2885 and spa type t13880. This strain carried type IV SCCmec with no PVL production. Five acquired antimicrobial resistance genes, namely blaZ, mecA, Inu(A), tet(K), and dfrG conferring resistance to β-lactams, lincosamides, tetracycline, and trimethoprim, were identified. The detected toxins were exfoliative toxin A, gamma-hemolysin, leukocidin D, and leukocidin E. Moreover, there were differences in seven regions in CR-MRSA no. S17 compared to CA-MRSA type 300. In summary, we have reported the ST2885-SCCmec IV CA-MRSA clinical strain in Thailand for the first time, highlighting the problem of methicillin resistance in community settings and the consideration in choosing appropriate antibiotic therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Andrea Lauková ◽  
Viola Strompfová ◽  
Jana Ščerbová ◽  
Monika Pogány Simonová

The sewage sludges represent a potential health hazard because of the quantity of different microbiota detected in sewages. Among microbiota detected in sewages, also belong representatives of the phylum Firmicutes. In the past, environmental enterococci in addition to coliforms were widely used as indicators of faecal contamination. Regarding the enterococcal strains as potential pathogenic bacteria, their pathogenicity is mainly caused by production of virulence factors. Therefore, the aim of the study was to analyse incidence of virulence factors in enterococci from cows' dung water. Species identification of 24 enterococci using MALDI-TOF MS system allotted 23 strains to the species Enterococcus faecium with highly probable species identification and E. faecalis EEV20 with a score value meaning secure genus identification/probable species identification. Enterococci were absent of cytolysin A gene, hyaluronidase gene, and element IS gene. It can be concluded that they are not invasive which is very important from safety aspect. The most frequently detected gene was adhesin E. faecium (efaAfm, in 22 E. faecium strains and in one E. faecalis). Adhesin efaAfs gene was detected in E. faecalis EEV20 and in two E. faecium. GelE gene was present in three strains. E. faecium EF/EC31 was absent of virulence factor genes.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1416
Author(s):  
Vanessa Silva ◽  
Eugénia Ferreira ◽  
Vera Manageiro ◽  
Lígia Reis ◽  
María Teresa Tejedor-Junco ◽  
...  

Natural aquatic environments represent one of the most important vehicles of bacterial dissemination. Therefore, we aimed to isolate staphylococci from surface waters and to investigate the presence of antimicrobial resistance genes and virulence factors as well as the genetic lineages of all Staphylococcus aureus isolates. Staphylococci were recovered from water samples collected from 78 surface waters, including rivers, streams, irrigation ditches, dams, lakes, and fountains. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Multilocus sequence typing and spa-typing were performed in all S. aureus isolates. From the 78 water samples, 33 S. aureus, one S. pseudintermedius, and 51 coagulase-negative staphylococci (CoNS) were identified. Among the S. aureus isolates, four MRSA were identified, and all harbored the mecC gene. Fourteen S. aureus were susceptible to all antimicrobials tested and the remaining showed resistance to penicillin, erythromycin and/or tetracycline encoded by the blaZ, ermT, msr(A/B), tetL, and vgaA genes. Regarding the clonal lineages, one mecC-MRSA isolate belonged to spa-type t843 and sequence type (ST) 130 and the other three to t742 and ST425. The remaining S. aureus were ascribed 14 spa-types and 17 sequence types. Eleven species of CoNS were isolated: S. sciuri, S. lentus, S. xylosus, S. epidermidis, S. cohnii spp. urealyticus, S. vitulinus, S. caprae, S. carnosus spp. Carnosus, S. equorum, S. simulans, and S. succinus. Thirteen CoNS isolates had a multidrug resistance profile and carried the following genes: mecA, msr(A/B), mph(C), aph(3′)-IIIa, aac(6′)-Ie–aph(2′’)-Ia, dfrA, fusB, catpC221, and tetK. A high diversity of staphylococci was isolated from surface waters including mecCMRSA strains and isolates presenting multidrug-resistance profiles. Studies on the prevalence of antibiotic-resistant staphylococci in surface waters are still very scarce but extremely important to estimate the contribution of the aquatic environment in the spread of these bacteria.


2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
J. Christopher Noone ◽  
Fabienne Antunes Ferreira ◽  
Hege Vangstein Aamot

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Yvonne Agersø ◽  
Birgitte Stuer-Lauridsen ◽  
Karin Bjerre ◽  
Michelle Geervliet Jensen ◽  
Eric Johansen ◽  
...  

ABSTRACTBacillus megaterium(n= 29),Bacillus velezensis(n= 26),Bacillus amyloliquefaciens(n= 6),Bacillus paralicheniformis(n= 28), andBacillus licheniformis(n= 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C forB. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in oneB. megateriumstrain with an elevated chloramphenicol MIC compared to the otherB. megateriumstrains. InB. velezensisandB. amyloliquefaciens, a putative tetracycline efflux gene,tet(L), was found in all strains (n= 27) with reduced tetracycline susceptibility but was absent in susceptible strains. AllB. paralicheniformisand 23% ofB. licheniformisstrains had elevated MICs for erythromycin and harboredermD. The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCEWhen commercializing bacterial strains, likeBacillusspp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for fiveBacillusspecies were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.


2018 ◽  
Vol 81 (4) ◽  
pp. 528-533 ◽  
Author(s):  
SUIXIA LI ◽  
PANPAN WANG ◽  
JIALIN ZHAO ◽  
LUHONG ZHOU ◽  
PENGFEI ZHANG ◽  
...  

ABSTRACTThe aim of this study was to investigate the toxin gene profile and antimicrobial resistance of Staphylococcus aureus isolates from raw chicken in the People's Republic of China. In total, 289 S. aureus isolates were characterized by antimicrobial susceptibility testing, and genes encoding enterotoxins, exfoliative toxins, Panton-Valentine leukocidin, and toxic shock syndrome toxin were revealed by PCR. Overall, 46.0% of the isolates were positive for one or more toxin genes. A high proportion of toxin genes were pvl (26.6%), followed by sej (12.5%), sea (9.0%), seh (8.3%), seb (6.9%), sec (6.9%), sed (4.8%), sei (3.1%), and see (2.4%). None of the isolates harbored seg, tsst-1, or exfoliative toxin genes. In total, 29 toxin gene profiles were obtained, and pvl (10.7%) was the most frequent genotype, followed by sea (5.9%), seb (4.8%), and sej (4.2%). Furthermore, 99.7% of the strains were resistant to at least one of the tested antimicrobial agents, and 87.2% of them displayed multidrug resistance. Resistance was most frequently observed to trimethoprim-sulfamethoxazole and erythromycin (86.2% for each), followed by tetracycline (69.9%), amoxicillin–clavulanic acid (45.0%), and ampicillin (42.6%). None of the strains were resistant to vancomycin. This study indicates that S. aureus isolates from raw chicken harbored multiple toxin genes and exhibited multiple antimicrobial resistance, which represents a potential health hazard for consumers.


2021 ◽  
Author(s):  
Jenna M Swarthout ◽  
Erica R Fuhrmeister ◽  
Latifah Hamzah ◽  
Angela Harris ◽  
Mir A. Ahmed ◽  
...  

Background Low- and middle-income countries (LMICs) bear the largest mortality burden due to antimicrobial-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antimicrobial resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities in population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in rural compared to urban Bangladesh. Results Gut microbiomes were more similar between humans and chickens in rural (where cohabitation is more common) compared to urban areas, but there was no difference for humans and goats. Urbanicity did not impact the similarity of human and animal resistomes; however, ARG abundance was higher in urban animals compared to rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts carried ARGs on contigs classified as potentially pathogenic bacteria, including Escherichia coli, Campylobacter jejuni, Clostridiodes difficile, and Klebsiella pneumoniae. Conclusions While the development of antimicrobial resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antimicrobial resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antimicrobial resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antimicrobial resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antimicrobial resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas.


Sign in / Sign up

Export Citation Format

Share Document