scholarly journals Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization

Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1077
Author(s):  
Anastasiia B. Shatan ◽  
Vitalii Patsula ◽  
Aneta Dydowiczová ◽  
Kristýna Gunár ◽  
Nadiia Velychkivska ◽  
...  

Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.

2009 ◽  
Vol 32 (6S) ◽  
pp. 3
Author(s):  
A Baass ◽  
H Wassef ◽  
M Tremblay ◽  
L Bernier ◽  
R Dufour ◽  
...  

Introduction: LCAT (lecithin:cholesterol acyltransferase ) is an enzyme which plays an essential role in cholesterol esterification and reverse cholesterol transport. Familial LCAT deficiency (FLD) is a disease characterized by a defect in LCAT resulting in extremely low HDL-C, premature corneal opacities, anemia as well as proteinuria and renal failure. Method: We have identified two brothers presenting characteristics of familial LCAT deficiency. We sequenced the LCAT gene, measured the lipid profile as well as the LCAT activity in 15 members of this kindred. We also characterized the plasma lipoproteins by agarose gel electrophoresis and size exclusion chromatography and sequenced several candidate genes related to dysbetalipoproteinemia in this family. Results: We have identified the first French Canadian kindred with familial LCAT deficiency. Two brothers affected by FLD, were homozygous for a novel LCAT mutation. This c.102delG mutation occurs at the codon for His35 causing a frameshift that stops transcription at codon 61 abolishing LCAT enzymatic activity both in vivo and in vitro. It has a dramatic effect on the lipoprotein profile, with an important reduction of HDL-C in both heterozygotes (22%) and homozygotes (88%) and a significant decrease in LDL-C in heterozygotes (35%) as well as homozygotes (58%). Furthermore, the lipoprotein profile differed markedly between the two affected brothers who had different APOE genotypes. We propose that APOE could be an important modifier gene explaining heterogeneity in lipoprotein profiles observed among FLD patients. Our results suggest that a LCAT-/- genotype associated with an APOE ?2 allele could be a novel mechanism leading to dysbetalipoproteinemia.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 157
Author(s):  
Kinga Böszörményi ◽  
Janet Hirsch ◽  
Gwendoline Kiemenyi Kayere ◽  
Zahra Fagrouch ◽  
Nicole Heijmans ◽  
...  

Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miriam F. Suzuki ◽  
Larissa A. Almeida ◽  
Stephanie A. Pomin ◽  
Felipe D. Silva ◽  
Renan P. Freire ◽  
...  

AbstractThe human prolactin antagonist Δ1-11-G129R-hPRL is a 21.9 kDa recombinant protein with 188 amino acids that downregulates the proliferation of a variety of cells expressing prolactin receptors. Periplasmic expression of recombinant proteins in E. coli has been considered an option for obtaining a soluble and correctly folded protein, as an alternative to cytoplasmic production. The aim of this work was, therefore, to synthesize for the first time, the Δ1-11-G129R-hPRL antagonist, testing different activation temperatures and purifying it by classical chromatographic techniques. E. coli BL21(DE3) strain was transformed with a plasmid based on the pET25b( +) vector, DsbA signal sequence and the antagonist cDNA sequence. Different doses of IPTG were added, activating under different temperatures, and extracting the periplasmic fluid via osmotic shock. The best conditions were achieved by activating at 35 °C for 5 h using 0.4 mM IPTG, which gave a specific expression of 0.157 ± 0.015 μg/mL/A600 at a final optical density of 3.43 ± 0.13 A600. Purification was carried out by nickel-affinity chromatography followed by size-exclusion chromatography, quantification being performed via high-performance size-exclusion chromatography (HPSEC). The prolactin antagonist was characterized by SDS-PAGE, Western blotting, reversed-phase high-performance liquid chromatography (RP-HPLC) and MALDI-TOF–MS. The final product presented > 95% purity and its antagonistic effects were evaluated in vitro in view of potential clinical applications, including inhibition of the proliferation of cancer cells overexpressing the prolactin receptor and specific antidiabetic properties, taking also advantage of the fact that this antagonist was obtained in a soluble and correctly folded form and without an initial methionine.


2021 ◽  
Vol 22 (3) ◽  
pp. 1199
Author(s):  
Elena Karnaukhova ◽  
Catherine Owczarek ◽  
Peter Schmidt ◽  
Dominik J. Schaer ◽  
Paul W. Buehler

Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX–heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX–heme interactions and potentially novel HPX fusion constructs.


2021 ◽  
Vol 22 (8) ◽  
pp. 4246
Author(s):  
Muhammad Maqbool ◽  
Qaisar Nawaz ◽  
Muhammad Atiq Ur Atiq Ur Rehman ◽  
Mark Cresswell ◽  
Phil Jackson ◽  
...  

In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32−) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell–material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Agata Cieślik-Bielecka ◽  
Tadeusz Bold ◽  
Grzegorz Ziółkowski ◽  
Marcin Pierchała ◽  
Aleksandra Królikowska ◽  
...  

The aim of the study was to investigate the leukocyte- and platelet-rich plasma (L-PRP) antimicrobial activity. The studied sample comprised 20 healthy males. The L-PRP gel, liquid L-PRP, and thrombin samples were testedin vitrofor their antibacterial properties against selected bacterial strains using the Kirby-Bauer disc diffusion method. Two types of thrombin were used (autologous and bovine). Zones of inhibition produced by L-PRP ranged between 6 and 18 mm in diameter. L-PRP inhibited the growth ofStaphylococcus aureus(MRSA and MSSA strains) and was also active againstEnterococcus faecalisandPseudomonas aeruginosa. There was no activity againstEscherichia coliandKlebsiella pneumoniae. The statistically significant increase of L-PRP antimicrobial effect was noted with the use of major volume of thrombin as an activator. Additionally, in groups where a bovine thrombin mixture was added to L-PRP the zones of inhibition concerning MRSA,Enterococcus faecalis, andPseudomonas aeruginosawere larger than in the groups with autologous thrombin. Based on the conducted studies, it can be determined that L-PRP can evokein vitroantimicrobial effects and might be used to treat selected infections in the clinical field. The major volume of thrombin as an activator increases the strength of the L-PRP antimicrobial effect.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jean Baptiste SOKOUDJOU ◽  
Olubunmi ATOLANI ◽  
Guy Sedar Singor NJATENG ◽  
Afsar KHAN ◽  
Cyrille Ngoufack TAGOUSOP ◽  
...  

Abstract Background Bacteria belonging to the Salmonella genus are major concern for health, as they are widely reported in many cases of food poisoning. The use of antibiotics remains a main stream control strategy for avian salmonellosis as well as typhoid and paratyphoid fevers in humans. Due to the growing awareness about drug resistance and toxicities, the use of antibiotics is being discouraged in many countries whilst advocating potent benign alternatives such as phyto-based medicine. The objective of this work was to isolate, characterise the bioactive compounds of Canarium schweinfurthii; and evaluate their anti-salmonellal activity. Methods The hydro-ethanolic extract of Canarium schweinfurthii was fractionated and tested for their anti-salmonellal activity. The most active fractions (i.e. chloroform and ethyl acetate partition fractions) were then explored for their phytochemical constituents. Fractionation on normal phase silica gel column chromatography and size exclusion chromatography on Sephadex LH-20 led to the isolation of four compounds (maniladiol, scopoletin, ethyl gallate and gallic acid) reported for the first time in Canarium schweinfurthii. Results Result indicated that scopoletin and gallic acid had greater activity than the crude extracts and partition fractions. Among the isolated compounds, scopoletin showed the highest inhibitory activity with a MIC of 16 μg/ml against Salmonella Typhimurium and Salmonella Enteritidis. Conclusions The overall results of this study indicates that the hydro-ethanolic extract as well as some of isolated compounds have interesting anti-salmonellal activities that could be further explored for the development of potent therapy for salmonellosis. Furthermore, the study adds credence to the folkloric applications of the plant.


2020 ◽  
Vol 21 (7) ◽  
pp. 2400 ◽  
Author(s):  
René Stürmer ◽  
Jana Reising ◽  
Werner Hoffmann

The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.


2020 ◽  
Vol 10 (8) ◽  
pp. 2648 ◽  
Author(s):  
Paolina Lukova ◽  
Mariana Nikolova ◽  
Emmanuel Petit ◽  
Redouan Elboutachfaiti ◽  
Tonka Vasileva ◽  
...  

The aim of the present study was to evaluate the prebiotic potential of Plantago major L. leaves water-extractable polysaccharide (PWPs) and its lower molecular fractions. The structure of PWPs was investigated by high pressure anion exchange chromatography (HPAEC), size exclusion chromatography coupled with multi-angle laser light scattering detector (SEC-MALLS) and Fourier-transform infrared (FTIR) spectroscopy. The chemical composition and monosaccharide analyses showed that galacturonic acid was the main monosaccharide of PWPs followed by glucose, arabinose, galactose, rhamnose and xylose. FTIR study indicated a strong characteristic absorption peak at 1550 cm−1 corresponding to the vibration of COO− group of galacturonic acid. The PWPs was subjected to hydrolysis using commercial enzymes to obtain P. major low molecular fraction (PLM) which was successively separated by size exclusion chromatography on Biogel P2. PWPs and PLM were examined for in vitro prebiotic activity using various assays. Results gave evidence for changes in optical density of the bacteria cells and pH of the growth medium. A heterofermentative process with a lactate/acetate ratio ranged from 1:1 to 1:5 was observed. The ability of PLM to stimulate the production of certain probiotic bacteria glycohydrolases and to be fermented by Lactobacillus sp. strains was successfully proved.


Sign in / Sign up

Export Citation Format

Share Document