scholarly journals Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma capsulatum

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1223
Author(s):  
Charlotte Berkes ◽  
Jimmy Franco ◽  
Maxx Lawson ◽  
Katelynn Brann ◽  
Jessica Mermelstein ◽  
...  

Histoplasma capsulatum is a dimorphic fungal pathogen endemic to the midwestern and southern United States. It causes mycoses ranging from subclinical respiratory infections to severe systemic disease, and is of particular concern for immunocompromised patients in endemic areas. Clinical management of histoplasmosis relies on protracted regimens of antifungal drugs whose effectiveness can be limited by toxicity. In this study, we hypothesize that conserved biochemical signaling pathways in the eukaryotic domain can be leveraged to repurpose kinase inhibitors as antifungal compounds. We conducted a screen of two kinase inhibitor libraries to identify compounds inhibiting the growth of Histoplasma capsulatum in the pathogenic yeast form. Our approach identified seven compounds with an elongated hydrophobic polyaromatic structure, five of which share a molecular motif including a urea unit linking a halogenated benzene ring and a para-substituted polyaromatic group. The top hits include the cancer therapeutic Sorafenib, which inhibits growth of Histoplasma in vitro and in a macrophage infection model with low host cell cytotoxicity. Our results reveal the possibility of repurposing Sorafenib or derivatives thereof as therapy for histoplasmosis, and suggest that repurposing of libraries developed for human cellular targets may be a fruitful source of antifungal discovery.

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrew L. Garfoot ◽  
Kristie D. Goughenour ◽  
Marcel Wüthrich ◽  
Murugesan V. S. Rajaram ◽  
Larry S. Schlesinger ◽  
...  

ABSTRACT The ability to grow at mammalian body temperatures is critical for pathogen infection of humans. For the thermally dimorphic fungal pathogen Histoplasma capsulatum, elevated temperature is required for differentiation of mycelia or conidia into yeast cells, a step critical for invasion and replication within phagocytic immune cells. Posttranslational glycosylation of extracellular proteins characterizes factors produced by the pathogenic yeast cells but not those of avirulent mycelia, correlating glycosylation with infection. Histoplasma yeast cells lacking the Pmt1 and Pmt2 protein mannosyltransferases, which catalyze O-linked mannosylation of proteins, are severely attenuated during infection of mammalian hosts. Cells lacking Pmt2 have altered surface characteristics that increase recognition of yeast cells by the macrophage mannose receptor and reduce recognition by the β-glucan receptor Dectin-1. Despite these changes, yeast cells lacking these factors still associate with and survive within phagocytes. Depletion of macrophages or neutrophils in vivo does not recover the virulence of the mutant yeast cells. We show that yeast cells lacking Pmt functions are more sensitive to thermal stress in vitro and consequently are unable to productively infect mice, even in the absence of fever. Treatment of mice with cyclophosphamide reduces the normal core body temperature of mice, and this decrease is sufficient to restore the infectivity of O-mannosylation-deficient yeast cells. These findings demonstrate that O-mannosylation of proteins increases the thermotolerance of Histoplasma yeast cells, which facilitates infection of mammalian hosts. IMPORTANCE For dimorphic fungal pathogens, mammalian body temperature can have contrasting roles. Mammalian body temperature induces differentiation of the fungal pathogen Histoplasma capsulatum into a pathogenic state characterized by infection of host phagocytes. On the other hand, elevated temperatures represent a significant barrier to infection by many microbes. By functionally characterizing cells lacking O-linked mannosylation enzymes, we show that protein mannosylation confers thermotolerance on H. capsulatum, enabling infection of mammalian hosts.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


2021 ◽  
Vol 30 (2) ◽  
pp. 81-87
Author(s):  
Sara Y. Maxwell ◽  
Sally Elnawasany ◽  
Azza M. Hassan ◽  
Marwa M. E. Abd-Elmonsef

Background: Oropharyngeal candidiasis is an important sign that may reflect a serious systemic disease, especially in immunocompromised patients who face the intolerable side effects of the available antifungal drugs. This necessitates the development of safe and effective natural components. Objectives: to evaluate the in vitro activities of both pomegranate peel and curcumin extracts and to compare them with nystatin and fluconazole drugs against Candida species. As far as we know, this is the first study comparing between the antifungal potency of both extracts. Methodology: Different Candida species were isolated from patients with oropharyngeal candidiasis. The antifungal activities of methanolic extracts of pomegranate peel and curcumin were tested by disc diffusion method. Both extracts were added to each of nystatin and fluconazole discs to measure their synergistic effects. Results: Highly significant synergism was detected between both extracts and each of antifungal drugs. Curcumin extract was more potent than pomegranate extract. Conclusion: When used in combination with nystatin and fluconazole, curcumin and pomegranate peel extracts are promising and effective anti-Candida agents.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Hassan E. Eldesouky ◽  
Abdelrahman Mayhoub ◽  
Tony R. Hazbun ◽  
Mohamed N. Seleem

ABSTRACTInvasive candidiasis presents an emerging global public health challenge due to the emergence of resistance to the frontline treatment options, such as fluconazole. Hence, the identification of other compounds capable of pairing with fluconazole and averting azole resistance would potentially prolong the clinical utility of this important group. In an effort to repurpose drugs in the field of antifungal drug discovery, we explored sulfa antibacterial drugs for the purpose of reversing azole resistance inCandida. In this study, we assembled and investigated a library of 21 sulfa antibacterial drugs for their ability to restore fluconazole sensitivity inCandida albicans. Surprisingly, the majority of assayed sulfa drugs (15 of 21) were found to exhibit synergistic relationships with fluconazole by checkerboard assay with fractional inhibitory concentration index (ΣFIC) values ranging from <0.0312 to 0.25. Remarkably, five sulfa drugs were able to reverse azole resistance in a clinically achievable range. The structure-activity relationships (SARs) of the amino benzene sulfonamide scaffold as antifungal agents were studied. We also identified the possible mechanism of the synergistic interaction of sulfa antibacterial drugs with azole antifungal drugs. Furthermore, the ability of sulfa antibacterial drugs to inhibitCandidabiofilm by 40%in vitrowas confirmed. In addition, the effects of sulfa-fluconazole combinations onCandidagrowth kinetics and efflux machinery were explored. Finally, using aCaenorhabditis elegansinfection model, we demonstrated that the sulfa-fluconazole combination does possess potent antifungal activityin vivo, reducingCandidain infected worms by ∼50% compared to the control.


2001 ◽  
Vol 280 (2) ◽  
pp. L354-L362 ◽  
Author(s):  
Pamela M. Lindroos ◽  
Yi-Zhe Wang ◽  
Annette B. Rice ◽  
James C. Bonner

Upregulation of the platelet-derived growth factor (PDGF) receptor-α (PDGFR-α) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1β as a major inducer of the PDGFR-α in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-α gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-α expression. Staurosporine did not act via an IL-1β autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-α expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1β, including nuclear factor-κB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1β-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-α by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-α expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-α as a growth arrest-specific gene.


2021 ◽  
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored.  Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


2018 ◽  
Vol 11 (549) ◽  
pp. eaat7951 ◽  
Author(s):  
Daniel M. Foulkes ◽  
Dominic P. Byrne ◽  
Wayland Yeung ◽  
Safal Shrestha ◽  
Fiona P. Bailey ◽  
...  

A major challenge associated with biochemical and cellular analysis of pseudokinases is a lack of target-validated small-molecule compounds with which to probe function. Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a diverse interactome, including the canonical AKT signaling module. There is substantial evidence that human TRIB2 promotes survival and drug resistance in solid tumors and blood cancers and therefore is of interest as a therapeutic target. The unusual TRIB2 pseudokinase domain contains a unique cysteine-rich C-helix and interacts with a conserved peptide motif in its own carboxyl-terminal tail, which also supports its interaction with E3 ubiquitin ligases. We found that TRIB2 is a target of previously described small-molecule protein kinase inhibitors, which were originally designed to inhibit the canonical kinase domains of epidermal growth factor receptor tyrosine kinase family members. Using a thermal shift assay, we discovered TRIB2-binding compounds within the Published Kinase Inhibitor Set (PKIS) and used a drug repurposing approach to classify compounds that either stabilized or destabilized TRIB2 in vitro. TRIB2 destabilizing agents, including the covalent drug afatinib, led to rapid TRIB2 degradation in human AML cancer cells, eliciting tractable effects on signaling and survival. Our data reveal new drug leads for the development of TRIB2-degrading compounds, which will also be invaluable for unraveling the cellular mechanisms of TRIB2-based signaling. Our study highlights that small molecule–induced protein down-regulation through drug “off-targets” might be relevant for other inhibitors that serendipitously target pseudokinases.


2018 ◽  
Vol 475 (15) ◽  
pp. 2417-2433 ◽  
Author(s):  
Dominic P. Byrne ◽  
Yong Li ◽  
Krithika Ramakrishnan ◽  
Igor L. Barsukov ◽  
Edwin A. Yates ◽  
...  

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3′-phosphoadenosine 5′-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


2002 ◽  
Vol 282 (3) ◽  
pp. G461-G469 ◽  
Author(s):  
Ya-Ping Fan ◽  
Rajinder N. Puri ◽  
Satish Rattan

Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT1antagonist losartan but not AT2 antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca2+ channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p44/42mitogen-activating protein kinase (MAPK44/42) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT1 and AT2receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT1 receptors at the SMC and involves multiple intracellular pathways, influx of Ca2+, and activation of PKC, Rho kinase, and MAPK44/42.


Sign in / Sign up

Export Citation Format

Share Document