scholarly journals Antimicrobial Resistance, Serologic and Molecular Characterization of E. coli Isolated from Calves with Severe or Fatal Enteritis in Bavaria, Germany

Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Feuerstein ◽  
Nelly Scuda ◽  
Corinna Klose ◽  
Angelika Hoffmann ◽  
Alexander Melchner ◽  
...  

Worldwide, enterotoxigenic Escherichia coli (ETEC) cause neonatal diarrhea and high mortality rates in newborn calves, leading to great economic losses. In Bavaria, Germany, no recent facts are available regarding the prevalence of virulence factors or antimicrobial resistance of ETEC in calves. Antimicrobial susceptibility of 8713 E. coli isolates obtained from 7358 samples of diseased or deceased diarrheic calves were investigated between 2015 to 2019. Considerably high rates of 84.2% multidrug-resistant and 15.8% extensively drug-resistant isolates were detected. The resistance situation of the first, second and third line antimicrobials for the treatment, here amoxicillin-clavulanate, enrofloxacin and trimethoprim-sulfamethoxazole, is currently acceptable with mean non-susceptibility rates of 28.1%, 37.9% and 50.0% over the investigated 5-year period. Furthermore, the ETEC serotypes O101:K28, O9:K35, O101:K30, O101:K32, O78:K80, O139:K82, O8:K87, O141:K85 and O147:K89, as well as the virulence factors F17, F41, F5, ST-I and stx1 were identified in a subset of samples collected in 2019 and 2020. The substantially high rates of multi- and extensively drug-resistant isolates underline the necessity of continuous monitoring regarding antimicrobial resistance to provide reliable prognoses and adjust recommendations for the treatment of bacterial infections in animals.

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Silpi Basak ◽  
Priyanka Singh ◽  
Monali Rajurkar

Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital.Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria.Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin.Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.


2019 ◽  
Vol 13 (2) ◽  
pp. 7-10
Author(s):  
Fatima Afroz ◽  
Shaheda Anwar ◽  
Mashrura Quraishi ◽  
GM Mohiuddin ◽  
SM Ali Ahmed ◽  
...  

Carbapenems, often agents of last resort for multidrug resistant bacterial infections are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Production of carbapenemases remain the most clinically important mechanism of carbapenem resistance in Enterobacteriaceae. The objective of this study was to determine the antibiogram pattern of carbapenemase producing Enterobacteriaceae. A cross sectional study was conducted at department of Microbiology and Immunology, BSMMU from September 2018 to August 2019. A total of 145 CRE isolates from different clinical samples were studied.Antimicrobial susceptibility was examinedby disk diffusion method and MIC of colistin by broth microdilution method. Resistant carbapenemase genes NDM and OXA-48 were identified by polymerase chain reaction. Out of 145 CRE isolates, 104 were NDM, 73 were OXA-48and 34 isolates were both NDM and OXA-48 co-producers. All the NDM and OXA-48 carbapenemase producing isolates were 100% resistant to meropenem, imipenem, ertapenem, ceftriaxone, ceftazidime, cefotaxime, cefuroxime, amoxicillin + clavulanic acid and piperacillin + tazobactam. Resistance rates of reserved antimicrobials to treat CRE isolates were also alarming. Thirty seven percent, 9.6% and 5.5 % of OXA-48 carbapenemase producers and 26.0%, 10.6% and 2.9% of NDM carbapenemase producers were resistant to colistin, polymyxin B and tigecycline respectively.Among the carbapenemase producing isolates, 16.6% (24) were multidrug resistant (MDR), 82.1% (119) were extensively drug resistant (XDR) and 1.3% (2) isolates were pan drug resistantwhich highlights the emerging therapeutic challenge for these superbugs. Bangladesh J Med Microbiol 2019; 13 (2): 7-10


2020 ◽  
Author(s):  
Xiaowei Yang ◽  
Runsheng Guo ◽  
Banglin Xie ◽  
Qi Lai ◽  
Jiaxiang Xu ◽  
...  

Abstract Background: Hospital-acquired infections (HAIs) are an emerging global problem that increases in-hospital mortality, length of stay, and cost. We performed a 6-year retrospective study to provide valuable insight into appropriate antibiotic use in HAI cases. We also aimed to understand how hospitals could reduce pathogen drug resistance in a population that overuses antibiotics.Methods: All data (2012–2017) were obtained from the Hospital Information Warehouse and Clinical Microbiology Laboratory.Results: We isolated 1392 pathogen strains from patients admitted to the orthopedics department during 2012–2017. Escherichia coli (14.7%, 204/1392), Enterobacter cloacae (13.9%, 193/1392), and Staphylococcus aureus (11.3%, 157/1392) were the most common pathogens causing nosocomial infections. The dominant Gram-negative bacterium was E. coli, with high resistance to ampicillin, levofloxacin, cotrimoxazole, gentamicin, and ciprofloxacin, in that order. E. coli was least resistant to amikacin, cefoperazone-sulbactam. The most dominant Gram-positive bacterium was S. aureus, highly resistant to penicillin and ampicillin, but not resistant to fluoroquinolones and cotrimoxazole. Analysis of risk factors related to multidrug-resistant bacteria showed that patients with open fractures were significantly more susceptible to methicillin-resistant S. aureus infections (p < 0.05). Additionally, extended-spectrum β-lactamase-producing E. coli infections occurred significantly more often in patients with degenerative diseases (p < 0.05). Elderly patients tended to be more susceptible to multidrug-resistant bacterial infections, but this outcome was not statistically significant.Conclusions:Antimicrobial resistance is a serious problem in orthopedics. To effectively control antimicrobial resistance among pathogens, we advocate extensive and dynamic monitoring of MDR bacteria, coupled with careful use of antibiotics.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 0986
Author(s):  
Al-Hasnawy Et al.

Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.


2021 ◽  
Vol 8 (12) ◽  
pp. 295
Author(s):  
Salem Djebala ◽  
Julien Evrard ◽  
Fabien Gregoire ◽  
Calixte Bayrou ◽  
Linde Gille ◽  
...  

The aim of this study was to identify the species and antimicrobial susceptibility of bacteria involved in parietal fibrinous peritonitis (PFP). We studied 156 peritoneal fluid samples from cows presenting PFP after caesarean section. Bacteria were cultured in selective media and their antimicrobial susceptibility was tested by disk diffusion assay. Bacteria were isolated in the majority (129/156; 83%) of samples. The majority (82/129; 63%) of positive samples contained one dominant species, while two or more species were cultured in 47/129 (36%) samples. Trueperella pyogenes (T. Pyogenes) (107 strains) was the most identified species, followed by Escherichia coli (E. coli) (38 strains), Proteus mirabilis (P. mirabilis) (6 strains), and Clostridium perfringens (C. perfringens) (6 strains). Several other species were sporadically identified. Antimicrobial susceptibility was tested in 59/185 strains, predominantly E. coli (38 strains) and P. mirabilis (6 strains). Antibiotic resistance, including resistance to molecules of critical importance, was commonly observed; strains were classified as weakly drug resistant (22/59; 37%), multidrug resistant (24/59; 41%), extensively drug resistant (12/59; 20%), or pan-drug resistant (1/59; 2%). In conclusion, extensive antibiotic resistance in the isolated germs might contribute to treatment failure. Ideally, antimicrobial therapy of PFP should be based upon bacterial culture and susceptibility testing.


2016 ◽  
Vol 29 (2) ◽  
pp. 321-347 ◽  
Author(s):  
Matthew E. Falagas ◽  
Evridiki K. Vouloumanou ◽  
George Samonis ◽  
Konstantinos Z. Vardakas

SUMMARYThe treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, thein vitroactivity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.


2020 ◽  
Author(s):  
lei tian ◽  
zhen zhang ◽  
ziyong sun

Abstract Background Bloodstream infections (BSIs) are a common consequence of infectious diseases and cause high morbidity and mortality. Appropriate antibiotic use is critical for patients’ treatment and prognosis. Long-term monitoring and analyzing of bacterial resistance are important for understanding the changes in bacterial resistance and infection control. Here, we report a retrospective study on antimicrobial resistance in BSI-associated pathogens.Methods Data from the Hubei Province Antimicrobial Resistance Surveillance System (HBARSS) from 1998–2017 were retrospectively analyzed using WHONET 5.6 software.Results Data from HBARSS (1998–2017) revealed that 40,518 Gram-positive bacteria and 26,568 Gram-negative bacteria caused BSIs, the most common of which were Staphylococcus aureus and Escherichia coli. Salmonella typhi was a predominant BSI-associated pathogen in 1998–2003. Drug susceptibility data showed that the resistance rates of E. coli and Klebsiella pneumoniae to cefotaxime were significantly higher than those to ceftazidime. Carbapenem-resistant (CR) E. coli and K. pneumoniae have also emerged. In 2013–2017, K. pneumoniae showed resistance levels reaching 15.8% and 17.5% to imipenem and meropenem, respectively, and Acinetobacter baumannii showed high resistance rates ranging from 60–80% to common antibiotics. The detection rate of Salmonella typhi resistance to third-generation cephalosporins and fluoroquinolones was less than 5%. Control of methicillin-resistant Staphylococcus aureus (MRSA) remains a major challenge, and in 2009–2017, the MRSA detection rate was 40–50%. The number of extensively drug-resistant A. baumannii and P. aeruginosa has been increasing since 2008. From 1998 to 2017, the total detection rates of extensively drug-resistant A. baumannii and P. aeruginosa were 34.38% (493/1434) and 7.45% (140/1879), respectively.Conclusions Prevalence of CR K. pneumoniae has increased significantly in recent years. Resistance rates of A. baumannii to common antimicrobial agents have increased exponentially, reaching high levels. MRSA remains a challenge to control.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Temilolu Idowu ◽  
George G. Zhanel ◽  
Frank Schweizer

ABSTRACT Ceftolozane-tazobactam is a potent β-lactam/β-lactamase inhibitor combination approved for the treatment of complicated intraabdominal and complicated urinary tract infections and, more recently, the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Although the activities of ceftolozane are not enhanced by tazobactam against Pseudomonas aeruginosa, it remains the most potent antipseudomonal agent approved to date. Emerging data worldwide has included reports of microbiological failure in patients with serious bacterial infections caused by multidrug-resistant (MDR) P. aeruginosa as a result of ceftolozane resistance developed within therapy. The objective of this study is to compare the efficacy of a tobramycin homodimer plus ceftolozane versus ceftolozane-tazobactam alone against MDR and extensively drug-resistant (XDR) P. aeruginosa. Tobramycin homodimer, a synthetic dimer of two monomeric units of tobramycin, was developed to abrogate the ribosomal properties of tobramycin with a view to mitigating aminoglycoside-related toxicity and resistance. Herein, we report that tobramycin homodimer, a nonribosomal aminoglycoside derivative, potentiates the activities of ceftolozane versus MDR/XDR P. aeruginosa in vitro and delays the emergence of resistance to ceftolozane-tazobactam in the wild-type PAO1 strain. This combination is also more potent than a standard ceftazidime-avibactam combination against these isolates. Conversely, a tobramycin monomer with intrinsic ribosomal properties does not potentiate ceftolozane under similar conditions. Susceptibility and checkerboard studies were assessed using serial 2-fold dilution assays, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. This strategy provides an avenue to further preserve the clinical utility of ceftolozane and enhances its spectrum of activity against one of the most difficult-to-treat pathogens in hospitals.


Sign in / Sign up

Export Citation Format

Share Document