scholarly journals Impact of Reappraisal of Fluoroquinolone Minimum Inhibitory Concentration Susceptibility Breakpoints in Gram-Negative Bloodstream Isolates

Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 189 ◽  
Author(s):  
Stephanie C. Shealy ◽  
Matthew M. Brigmon ◽  
Julie Ann Justo ◽  
P. Brandon Bookstaver ◽  
Joseph Kohn ◽  
...  

The Clinical Laboratory Standards Institute lowered the fluoroquinolone minimum inhibitory concentration (MIC) susceptibility breakpoints for Enterobacteriaceae and glucose non-fermenting Gram-negative bacilli in January 2019. This retrospective cohort study describes the impact of this reappraisal on ciprofloxacin susceptibility overall and in patients with risk factors for antimicrobial resistance. Gram-negative bloodstream isolates collected from hospitalized adults at Prisma Health-Midlands hospitals in South Carolina, USA, from January 2010 to December 2014 were included. Matched pairs mean difference (MD) with 95% confidence intervals (CI) were calculated to examine the change in ciprofloxacin susceptibility after MIC breakpoint reappraisal. Susceptibility of Enterobacteriaceae to ciprofloxacin declined by 5.2% (95% CI: −6.6, −3.8; p < 0.001) after reappraisal. The largest impact was demonstrated among Pseudomonas aeruginosa bloodstream isolates (MD −7.8, 95% CI: −14.6, −1.1; p = 0.02) despite more conservative revision in ciprofloxacin MIC breakpoints. Among antimicrobial resistance risk factors, fluoroquinolone exposure within the previous 90 days was associated with the largest change in ciprofloxacin susceptibility (MD −9.3, 95% CI: −16.1, −2.6; p = 0.007). Reappraisal of fluoroquinolone MIC breakpoints has a variable impact on the susceptibility of bloodstream isolates by microbiology and patient population. Healthcare systems should be vigilant to systematically adopt this updated recommendation in order to optimize antimicrobial therapy in patients with bloodstream and other serious infections.

Author(s):  
Mariana Chumbita ◽  
Pedro Puerta-Alcalde ◽  
Carlota Gudiol ◽  
Nicole Garcia-Pouton ◽  
Júlia Laporte-Amargós ◽  
...  

Objectives: We analyzed risk factors for mortality in febrile neutropenic patients with bloodstream infections (BSI) presenting with septic shock and assessed the impact of empirical antibiotic regimens. Methods: Multicenter retrospective study (2010-2019) of two prospective cohorts comparing BSI episodes in patients with or without septic shock. Multivariate analysis was performed to identify independent risk factors for mortality in episodes with septic shock. Results: Of 1563 patients with BSI, 257 (16%) presented with septic shock. Those patients with septic shock had higher mortality than those without septic shock (55% vs 15%, p<0.001). Gram-negative bacilli caused 81% of episodes with septic shock; gram-positive cocci, 22%; and Candida species 5%. Inappropriate empirical antibiotic treatment (IEAT) was administered in 17.5% of septic shock episodes. Empirical β-lactam combined with other active antibiotics was associated with the lowest mortality observed. When amikacin was the only active antibiotic, mortality was 90%. Addition of empirical specific gram-positive coverage had no impact on mortality. Mortality was higher when IEAT was administered (76% vs 51%, p=0.002). Age >70 years (OR 2.3, 95% CI 1.2-4.7), IEAT for Candida spp. or gram-negative bacilli (OR 3.8, 1.3-11.1), acute kidney injury (OR 2.6, 1.4-4.9) and amikacin as the only active antibiotic (OR 15.2, 1.7-134.5) were independent risk factors for mortality, while combination of β-lactam and amikacin was protective (OR 0.32, 0.18-0.57). Conclusions: Septic shock in febrile neutropenic patients with BSI is associated with extremely high mortality, especially when IEAT is administered. Combination therapy including an active β-lactam and amikacin results in the best outcomes.


2018 ◽  
Vol 4 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Martha J. Lane ◽  
Alma F. Roy ◽  
Michael T. Kearney ◽  
Cherie M. Pucheu-Haston

2015 ◽  
Vol 59 (2) ◽  
pp. 229-233 ◽  
Author(s):  
Hanna Różańska ◽  
Aleksandra Lewtak-Piłat ◽  
Jacek Osek

Abstract The aim of the study was the evaluation of the antimicrobial resistance of Enterococcus faecalis strains isolated from cattle, pig, and poultry meat. A test was performed on 111 strains using the minimum inhibitory concentration technique. The highest number of isolates (94 strains) were resistant to lincomycin, the second-highest resistance was to quinupristin/dalfopristin (88 strains), tetracycline followed (65 strains), and erythromycin resistance was also notable (40 strains). All isolates tested were sensitive to daptomycin, nitrofurantoine, and tigecycline, whereas only few strains were resistant to ciprofloxacin, gentamicin, penicillin, and vancomycin. The obtained results showed that meat may be a source of antimicrobial resistant enterococci which may be transferred to humans


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 186 ◽  
Author(s):  
Dalal Hammoudi Halat ◽  
Carole Ayoub Moubareck

Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1405
Author(s):  
Alec Michael ◽  
Todd Kelman ◽  
Maurice Pitesky

The development of antimicrobial resistance (AMR) represents a significant threat to humans and food animals. The use of antimicrobials in human and veterinary medicine may select for resistant bacteria, resulting in increased levels of AMR in these populations. As the threat presented by AMR increases, it becomes critically important to find methods for effectively interpreting minimum inhibitory concentration (MIC) tests. Currently, a wide array of techniques for analyzing these data can be found in the literature, but few guidelines for choosing among them exist. Here, we examine several quantitative techniques for analyzing the results of MIC tests and discuss and summarize various ways to model MIC data. The goal of this review is to propose important considerations for appropriate model selection given the purpose and context of the study. Approaches reviewed include mixture models, logistic regression, cumulative logistic regression, and accelerated failure time–frailty models. Important considerations in model selection include the objective of the study (e.g., modeling MIC creep vs. clinical resistance), degree of censoring in the data (e.g., heavily left/right censored vs. primarily interval censored), and consistency of testing parameters (e.g., same range of concentrations tested for a given antibiotic).


2015 ◽  
Vol 119 (1-2) ◽  
pp. 31-40 ◽  
Author(s):  
Vanessa M. Schmidt ◽  
Gina L. Pinchbeck ◽  
Tim Nuttall ◽  
Neil McEwan ◽  
Susan Dawson ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 140
Author(s):  
Ioana D. Olaru ◽  
Shunmay Yeung ◽  
Rashida A. Ferrand ◽  
Richard Stabler ◽  
Prosper Chonzi ◽  
...  

Antimicrobial resistance (AMR) is compromising our ability to successfully treat infections. There are few data on gram-negative AMR prevalence in sub-Saharan Africa especially from the outpatient setting. This study aims to investigate the prevalence of and underlying molecular mechanisms for AMR in gram-negative bacilli causing urinary tract infections (UTIs) in Zimbabwe. Risk factors for AMR and how AMR impacts on clinical outcomes will also be investigated. Adults presenting with UTI symptoms at primary health clinics in Harare will be included. A questionnaire will be administered, and urine samples will be collected for culture. Participants with positive urine cultures will be followed up at 7-14 days post-enrolment. All participants will also be followed by telephone at 28 days to determine clinical outcomes. Bacterial identification and antibiotic susceptibility testing will be performed on positive cultures. The results from this study will be used to inform policy and development of treatment recommendations. Whole genome sequencing results will provide a better understanding of the prevalent resistance genes in Zimbabwe, of the spread of successful clones, and potentially will contribute to developing strategies to tackle AMR.


Sign in / Sign up

Export Citation Format

Share Document