scholarly journals Increased Azithromycin Susceptibility of Multidrug-Resistant Gram-Negative Bacteria on RPMI-1640 Agar Assessed by Disk Diffusion Testing

Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 218 ◽  
Author(s):  
Milton Meerwein ◽  
Andrea Tarnutzer ◽  
Michelle Böni ◽  
Françoise Van Bambeke ◽  
Michael Hombach ◽  
...  

Increasing antibiotic resistances and a lack of new antibiotics render the treatment of Gram-negative bacterial infections increasingly difficult. Therefore, additional approaches are being investigated. Macrolides are not routinely used against Gram-negative bacteria due to lack of evidence of in vitro effectiveness. However, it has been shown that Pseudomonas spp. are susceptible to macrolides in liquid RPMI-1640 and clinical data suggest improvement in patients’ outcomes. So far, these findings have been hardly applicable to the clinical setting due to lack of routine low-complexity antimicrobial susceptibility testing (AST) for macrolides. We therefore optimized and compared broth microdilution and disk diffusion AST. Multidrug-resistant Gram-negative bacteria (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa) were tested for azithromycin susceptibility by disk diffusion and broth microdilution in Mueller–Hinton and RPMI-1640 media. Azithromycin susceptibility of Enterobacteriaceae and a subgroup of P. aeruginosa increased significantly on RPMI-1640 agar compared to Mueller–Hinton agar. Further, a significant correlation (Kendall, τ, p) of zone diameters and minimal inhibitory concentrations (MICs) was found on RPMI-1640 agar for E. coli (−0.4279, 0.0051), E. cloacae (−0.3783, 0.0237) and P. aeruginosa (−0.6477, <0.0001). Performing routine disk diffusion AST on RPMI-1640 agar may lead to the identification of additional therapeutic possibilities for multidrug-resistant bacterial infections in the routine clinical diagnostic setting.

Author(s):  
Shams N ◽  
◽  
AlHiraky H ◽  
Moulana N ◽  
Riahi M ◽  
...  

The surge in the prevalence of Multidrug-Resistant (MDR) Gram-negative bacterial infections with limited treatment led to colistin reusing to treat MDR infections. This study aimed to determine economical, simple, and reliable colistin susceptibility testing methods as an alternative to the microdilution technique. We compared seven colistin susceptibility testing methods, including quantitative and qualitative, namely: Disk diffusion, E-test, ComASPTM SensiTest Colistin, Colistin broth disk elution, and colistin agar test CHROMagarTM COL-APSE, and BD Phoenix ID/AST automated identification and susceptibility testing system to the gold standard Broth Microdilution (BMD). Whole-genome sequencing was performed on all isolates to determine if the genetic resistant factors affect the phenotypic profile of the colistin resistance. Our results revealed that disk diffusion is still an ineffective method for measuring colistin susceptibility in Gram-negative Bacilli with the highest major error (31.75%), the lowest Kappa 0 (0%), and categorical agreement (68.25%) values. Phoenix, and CompASPTM SensiTest colistin methods have remained superior in reproducibility, sturdiness, and simplicity of use, similar to the currently recommended broth microdilution procedure; with high sensitivity of 95.56%, and 97.73%, specificity of 95.24, and 100%, and Kappa values of 0.89 and 0.95, respectively. This study revealed that Phoenix, and ComASPTM SensiTest colistin methods are recommended for routine microbiology laboratories with a large workload.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Nadine Lemaître ◽  
Xiaofei Liang ◽  
Javaria Najeeb ◽  
Chul-Jin Lee ◽  
Marie Titecat ◽  
...  

ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S5-S5
Author(s):  
Robert Potter ◽  
Meghan Wallace ◽  
Carey-Ann Burnham

Abstract Cefidericol is a cephalosporin-siderophore antibiotic for the treatment of multidrug resistant Gram-negative bacteria. Similar to other cephalosporin antibiotics, the lethal mechanism of action is due to inhibition of penicillin binding proteins leading to lysis of the bacteria. However, unlike previously developed antibiotics, the siderophore portion of cefidericol is able to bind iron and then be actively transported into the periplasmic space. To ascertain the feasibility of cefidericol antibiotic susceptibility testing in the Barnes-Jewish Clinical Microbiology Laboratory, we collected a cohort of multidrug Enterobacteriacae (5 Enterobacter cloace, 8 Escherichia coli, 12 Klebsiella pneumoniae), Pseudomonas aeruginosa (n=23), Stenotrophomonas maltophila (n=24), and Acinetobacter baumannii (n=25). We evaluated activity of cefidericol on these strains, and the performance of disk diffusion using three different brands of Mueller-Hinton Agar (BD, Hardy, and Remel). The reference method for comparison was an FDA-cleared broth microdilution panel containing cefidericol (ThermoFisher Scientific). Using CLSI breakpoints, we found that disk diffusion with BD agar had 96% categorical agreement for Enterobacterales, 100% for P. aeruginosa, 92% for A. baumannii, 96% for S. maltophila. We found that Hardy had 96% categorical agreement for Enterobacterales, 92% for P. aeruginosa, 92% for A. baumannii, 96% for S. maltophila. Finally, we found that Hardy had 96% categorical agreement for Enterobacterales, 92% for P. aeruginosa, 92% for A. baumannii, 96% for S. maltophila. Minor errors on any media never exceed 4% and there were no very major errors. Resistance to cefidericol within our cohort of selected antibiotic resistant bacteria was rare, one E. coli isolate and two P. aeruginosa isolates had minimal inhibitory concentrations (MICs) &gt; 32 μg/mL. The highest MICs for one isolate of A. baumannii and one isolate S. maltophila was 8 μg/mL and 4 μg/mL, respectively, both of which were intermediate. There was no difference in the distribution of zone disk diffusion diameter for A. baumannii or Enterobacterales. However, there was a significant difference in the distribution of zone disk diffusion diameters for P. aeruginosa and S. maltophila on BD vs Hardy agar. The median for P. aeruginosa on BD is 25 mm while it is 29 mm on Hardy. The trend for S. maltophila is the opposite as the median for BD was 31.5 mm and 28.5 mm for Hardy. Use of FDA vs CLSI vs EUCAST breakpoints significantly changes outcome of susceptibility testing for broth microdilution and disk diffusion. As one example for broth microdilution of A. baumannii, we had one isolate intermediate using CLSI breakpoints, 4 resistant using EUCAST breakpoints, and 4 resistant and 3 intermediate isolates using FDA breakpoints. Our work demonstrates that cefedericol testing can be performed in a routine format, with certain organismal differences on Mueller-Hinton agar, and that different interpretative criteria significantly change outcomes.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Shazad Mushtaq ◽  
Zahra Sadouki ◽  
Anna Vickers ◽  
David M. Livermore ◽  
Neil Woodford

ABSTRACT Cefiderocol is a parenteral siderophore cephalosporin with a catechol-containing 3′ substituent. We evaluated its MICs against Gram-negative bacteria, using iron-depleted Mueller-Hinton broth. The panel comprised 305 isolates of Enterobacterales, 111 of Pseudomonas aeruginosa, and 99 of Acinetobacter baumannii, all selected for carbapenem resistance and multidrug resistance to other agents. At 2 and 4 μg/ml, cefiderocol inhibited 78.7 and 92.1%, respectively, of all Enterobacterales isolates tested, with rates of 80 to 100% for isolates with all modes of carbapenem resistance except NDM enzymes (41.0% inhibited at 2 μg/ml and 72.1% at 4 μg/ml) or combinations of extended-spectrum β-lactamase (ESBL) and porin loss (61.5% inhibited at 2 μg/ml and 88.5% at 4 μg/ml). Cefiderocol also inhibited 81.1 and 86.5% of all P. aeruginosa isolates at 2 and 4 μg/ml, respectively, with rates of 80 to 100% for isolates with VIM, IMP, GES, or VEB β-lactamases and slightly lower rates for those with NDM (45.5% at 2 μg/ml and 72.7% at 4 μg/ml) and PER (66.7% at 2 μg/ml and 73.3% at 4 μg/ml) enzymes; 63.3% of P. aeruginosa isolates were inhibited at the FDA’s 1-μg/ml breakpoint. Lastly, cefiderocol at 2 and 4 μg/ml inhibited 80.8 and 88.9% of the A. baumannii isolates, respectively, with rates of >85% for isolates with OXA-51-like, -23, -24, or -58 enzymes and 50% at 2 μg/ml and 80% at 4 μg/ml for those with NDM carbapenemases. Dipicolinic acid and avibactam weakly potentiated cefiderocol against Enterobacterales isolates with metallo-β-lactamases (MBLs) and serine carbapenemase, respectively, indicating incomplete β-lactamase stability.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Ryan K. Shields

ABSTRACT Cefiderocol is a newly approved siderophore cephalosporin that demonstrates expanded in vitro activity against multidrug-resistant Gram-negative bacteria. In two challenging cases reported here, cefiderocol shows potential utility as salvage therapy against difficult-to-treat pathogens with limited or no treatment options; however, two multicenter, randomized clinical trials have yielded mixed results among cefiderocol-treated patients. Taken together, clinicians must balance a clear need for cefiderocol in clinical practice with the uncertainties that have stemmed from the available data.


2015 ◽  
Vol 15 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Naomi Ochieng' ◽  
Humphrey Okechi ◽  
Susan Ferson ◽  
A. Leland Albright

OBJECT Ventriculoperitoneal shunt (VPS) infections are a major cause of morbidity and mortality in patients with hydrocephalus. Most data about these infections come from the Western literature. Few data about infecting organisms in Africa are available, yet knowledge of these organisms is important for the prevention and treatment of infectious complications. The purpose of this study was to determine the organisms cultured from infected shunts in a rural Kenyan hospital. METHODS The authors conducted a retrospective study of patients with VPS infections recorded in the neurosurgical database of BethanyKids at Kijabe Hospital between September 2010 and July 2012. RESULTS Among 53 VPS infections confirmed by culture, 68% occurred in patients who were younger than 6 months. Seventy-nine percent of the infections occurred within 2 months after shunt insertion. Only 51% of infections were caused by Staphylococcus species (Staphylococcus aureus 25%, other Staphylococcus species 26%), whereas 40% were caused by gram-negative bacteria. All S. aureus infections and 79% of other Staphylococcus infections were sensitive to cefazolin, but only 1 of 21 gram-negative bacteria was sensitive to it. The majority of gram-negative bacterial infections were multidrug resistant, but 17 of the 20 gram-negative bacteria were sensitive to meropenem. Gram-negative bacterial infections were associated with worse outcomes. CONCLUSIONS The high proportion of gram-negative infections differs from data in the Western literature, in which Staphylococcus epidermidis is by far the most common organism. Once a patient is diagnosed with a VPS infection in Kenya, immediate treatment is recommended to cover both gram-positive and gram-negative bacterial infections. Data from other Sub-Saharan countries are needed to determine if those countries have the same increased frequency of gram-negative infections.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Flora T. Mambe ◽  
Jean Na-Iya ◽  
Ghislain W. Fotso ◽  
Fred Ashu ◽  
Bathélémy Ngameni ◽  
...  

The present study aimed to assess the in vitro antibacterial and antibiotic modifying activities of methanol extracts prepared from the leaf (APL) and bark (APB) of Acacia polyacantha, fractions (APLa-d) and compounds isolated from APL against a panel of multidrug resistant (MDR) Gram-negative bacteria. Leaf extract was subjected to column chromatography for compounds isolation; antibacterial assays were performed on samples alone and with an efflux pump inhibitor (EPI), respectively, and several antibiotics on the tested bacteria. The phytochemical investigation of APL led to the isolation of stigmasterol (1), β-amyrin (2), 3-O-β-D-glucopyranosylstigmasterol (3), 3-O-methyl-D-chiro-inositol (4), epicatechin (5), quercetin-3-O-glucoside (6), 3-O-[β-D-xylopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (7), and 3-O-[β-galactopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (8). APL and APB had minimal inhibitory concentration (MIC) values ≤ 1024 μg/mL on 73.3% and 46.7% of the tested bacteria, respectively. APLb and APLd were effective against 88.9% of tested bacterial species with compound 8 showing the highest activity inhibiting 88.9% of tested bacteria. The EPI, phenylalanine-arginine-β-naphthylamide (PAßN), strongly improved the activity of APL, APLb, APLd, and compound 8 on all tested bacteria. Synergistic effects were obtained when APL and compounds 7 and 8 were combined with erythromycin (ERY), gentamycin (GEN), ciprofloxacin (CIP), and norfloxacin (NOR). The present study demonstrates the antibacterial potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with EPI.


2013 ◽  
Vol 58 (2) ◽  
pp. 851-858 ◽  
Author(s):  
Nicola Petrosillo ◽  
Maddalena Giannella ◽  
Massimo Antonelli ◽  
Mario Antonini ◽  
Bruno Barsic ◽  
...  

ABSTRACTA colistin-glycopeptide combination (CGC) has been shownin vitroto be synergistic against multidrug-resistant Gram-negative bacteria (MDR GNB), especiallyAcinetobacter baumannii, and to prevent further resistance. However, clinical data are lacking. We carried out a retrospective multicenter study of patients hospitalized in intensive care units (ICUs) who received colistin for GNB infection over a 1-year period, to assess the rates of nephrotoxicity and 30-day mortality after treatment onset among patients treated with and without CGC for ≥48 h. Of the 184 patients treated with colistin, GNB infection was documented for 166. The main causative agents were MDRA. baumannii(59.6%), MDRPseudomonas aeruginosa(18.7%), and carbapenem-resistantKlebsiella pneumoniae(14.5%); in 16.9% of patients, a Gram-positive bacterium (GPB) coinfection was documented. Overall, 68 patients (40.9%) received CGC. Comparison of patients treated with and without CGC showed significant differences for respiratory failure (39.7% versus 58.2%), ventilator-associated pneumonia (54.4% versus 71.4%), MDRA. baumanniiinfection (70.6% versus 52%), and GPB coinfection (41.2% versus 0%); there were no differences for nephrotoxicity (11.8% versus 13.3%) and 30-day mortality (33.8% versus 29.6%). Cox analysis performed on patients who survived for ≥5 days after treatment onset showed that the Charlson index (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.01 to 1.44;P= 0.001) and MDRA. baumanniiinfection (HR, 2.51; 95% CI, 1.23 to 5.12;P= 0.01) were independent predictors of 30-day mortality, whereas receiving CGC for ≥5 days was a protective factor (HR, 0.42; 95% CI, 0.19 to 0.93;P= 0.03). We found that CGC was not associated with higher nephrotoxicity and was a protective factor for mortality if administered for ≥5 days.


Sign in / Sign up

Export Citation Format

Share Document