scholarly journals A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture?

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 493
Author(s):  
Carmen Sieiro ◽  
Lara Areal-Hermida ◽  
Ángeles Pichardo-Gallardo ◽  
Raquel Almuiña-González ◽  
Trinidad de Miguel ◽  
...  

Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.

2021 ◽  
Vol 7 (8) ◽  
pp. 112
Author(s):  
Lingchao Xiang ◽  
Ozioma Udochukwu Akakuru ◽  
Chen Xu ◽  
Aiguo Wu

Infections caused by pathogenic bacteria, especially multidrug-resistant bacteria, have become a serious worldwide public health problem. Early diagnosis and treatment can effectively prevent the adverse effects of such infections. Therefore, there is an urgent need to develop effective methods for the early detection, prevention, and treatment of diseases that are caused by bacterial infections. So far, magnetic material nanoparticles (MNPs) have been widely used in the detection and treatment of bacterial infections as detection agents and therapeutics. Therefore, this review describes the recent research on MNPs in bacterial detection and treatment. Finally, a brief discussion of challenges and perspectives in this field is provided, which is expected to guide the further development of MNPs for bacterial detection and treatment.


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


2020 ◽  
Author(s):  
Shogo Yoshimoto ◽  
Ayane Kawashiri ◽  
Taishi Matsushita ◽  
Satoshi Ishii ◽  
Stephan Göttig ◽  
...  

<p>The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. <i>Acinetobacter</i> sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.</p>


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


2021 ◽  
Author(s):  
Liping Li ◽  
Francesca Short ◽  
Karl Hassan ◽  
Varsha Naidu ◽  
Alaska Pokhrel ◽  
...  

Abstract Biocides, such as antiseptics and disinfectants, are used ubiquitously for hygiene in households and for life-saving infection control in hospitals. An increasing concern is that the widespread use of biocides may contribute to the emergence and spread of multidrug-resistant bacteria. We performed transposon directed insertion site sequencing (TraDIS) to identify genes and key cellular pathways of the multidrug resistant nosocomial pathogen Acinetobacter baumannii, that affect host fitness during exposure to a panel of ten structurally-diverse and clinically-relevant biocides: silver nitrate, benzalkonium, cetyltrimethylammonium bromide (CTAB), chlorhexidine, triclosan, chloroxylenol, polyvidone iodine, bleach, glutaraldehyde and ethanol. Multiple genes encoding proteins localised either in the cell envelope or in the cytoplasm were shown to affect biocide susceptibility. These proteins are involved in multiple processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, suggesting that these biocides may have intracellular targets in addition to their known effects on the cell envelope. Based on the importance of cell respiration genes for A. baumannii fitness on biocides, we proposed and confirmed that apart from triclosan, the other 9 biocides at sub-inhibitory concentration can dissipate the membrane potential and lead to A. baumannii tolerance to antibiotics that have intracellular targets. Our results support the concern that residual biocides in clinical or community environments can promote the development of antibiotic resistance in pathogenic bacteria.


2021 ◽  
Vol 22 ◽  
Author(s):  
Namita Sharma ◽  
Anil K. Chhillar ◽  
Sweety Dahiya ◽  
Pooja Choudhary ◽  
Aruna Punia ◽  
...  

The escalating emergence and prevalence of infections caused by multi-drug resistant (MDR) pathogenic bacteria accentuate the crucial need to develop novel and effectual therapeutic strategies to control this threat. Recent past surprisingly indicates a staggering decline in effective strategies against MDR. Different approaches have been employed to minimize the effect of resistance but the question still lingers over the astounding number of drugs already tried and tested to no avail, furthermore, the detection of new drug targets and the action of new antibacterial agents against already existing drug targets also complicate the condition. Antibiotic adjuvants are considered as one such promising approach for overcoming the bacterial resistance. Adjuvants can potentiate the action of generally adopted antibacterial drugs against MDR bacterial pathogens either by minimizing the impact and emergence of resistance or improving the action of antibacterial drugs. This review provides an overview of mechanism of antibiotic resistance, main types of adjuvants and their mode of action, achievements and progression.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 367
Author(s):  
Alexandre Lamas ◽  
Vicente Arteaga ◽  
Patricia Regal ◽  
Beatriz Vázquez ◽  
José Manuel Miranda ◽  
...  

Antimicrobial resistance is one of today’s major public health challenges. Infections caused by multidrug-resistant bacteria have been responsible for an increasing number of deaths in recent decades. These resistant bacteria are also a concern in the food chain, as bacteria can resist common biocides used in the food industry and reach consumers. As a consequence, the search for alternatives to common antimicrobials by the scientific community has intensified. Substances obtained from nature have shown great potential as new sources of antimicrobial activity. The aim of this study was to evaluate the antimicrobial activity of five bee venoms, also called apitoxins, against two common foodborne pathogens. A total of 50 strains of the Gram-negative pathogen Salmonella enterica and 8 strains of the Gram-positive pathogen Listeria monocytogenes were tested. The results show that the minimum inhibitory concentration (MIC) values were highly influenced by the bacterial genus. The MIC values ranged from 256 to 1024 µg/mL in S. enterica and from 16 to 32 µg/mL in L. monocytogenes. The results of this study demonstrate that apitoxin is a potential alternative agent against common foodborne pathogens, and it can be included in the development of new models to inhibit the growth of pathogenic bacteria in the food chain.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 85 ◽  
Author(s):  
Hercules Sakkas ◽  
Petros Bozidis ◽  
Afrodite Ilia ◽  
George Mpekoulis ◽  
Chrissanthy Papadopoulou

During a six-month period (October 2017–March 2018), the prevalence and susceptibility of important pathogenic bacteria isolated from 12 hospital raw sewage samples in North Western Greece was investigated. The samples were analyzed for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, carbapenemase-producing Klebsiella pneumoniae (CKP), and multidrug-resistant Pseudomonas aeruginosa. Antimicrobial susceptibility testing was performed using the agar diffusion method according to the recommendations of the Clinical and Laboratory Standards Institute. The diversity of carbapenemases harboring K. pneumoniae was examined by two phenotyping screening methods (modified Hodge test and combined disk test), a new immunochromatographic rapid assay (RESIST-4 O.K.N.V.) and a polymerase chain reaction (PCR). The results demonstrated the prevalence of MRSA, vancomycin-resistant Staphylococcus aureus (VRSA), VRE, and CKP in the examined hospital raw sewage samples. In addition, the aforementioned methods which are currently used in clinical laboratories for the rapid identification and detection of resistant bacteria and genes, performed sufficiently to provide reliable results in terms of accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document