scholarly journals Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 347
Author(s):  
Ilekuttige Priyan Shanura Fernando ◽  
Mawalle Kankanamge Hasitha Madhawa Dias ◽  
Dissanayaka Mudiyanselage Dinesh Madusanka ◽  
Eui Jeong Han ◽  
Min Ju Kim ◽  
...  

Fucoidans exhibit a wide range of bioactivities and receive significant attention in functional food and cosmetic research. Industrial applications of fucoidan are limited partially due to high extraction and purification costs. The present study implements an enzyme-assisted extraction and step-gradient ethanol precipitation for fractionating fucoidan from Sargassum coreanum based on its charge and molecular weight and evaluation of ultraviolet B (UVB) protective effects in human keratinocytes (HaCaT). The fucoidan fraction SCOC4 indicated higher fucose and sulfate contents with Fourier-transform infrared and 1H NMR spectral patterns resembling fucoidans. SCOC4 dose-dependently abated UVB-induced keratinocyte damage via suppressing intracellular reactive oxygen species, apoptotic body formation, DNA damage via suppressing mitochondria-mediated apoptosis. UVB-protective effects of SCOC4 were further attributable to the augmentation of nuclear factor erythroid 2-related factor 2 mediated cellular antioxidant defense enzymes. Step-gradient ethanol precipitation was a convenient approach of fractionating fucoidans based on molecular weight and charge (depend on the degree of sulfation). Further evaluation of seasonal variations, biocompatibility parameters, efficacy, and shelf life may widen the use of S. coreanum fucoidans in developing UVB-protective cosmetics and functional foods.

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 340 ◽  
Author(s):  
Ilekuttige Priyan Shanura Fernando ◽  
Mawalle Kankanamge Hasitha Madhawa Dias ◽  
Disanayaka Mudiyanselage Dinesh Madusanka ◽  
Eui Jeong Han ◽  
Min Ju Kim ◽  
...  

Ultraviolet B (UVB) radiation-induced oxidative skin cell damage is a major cause of photoaging. In the present study, a low molecular weight fucoidan fraction (SHC4) was obtained from Sargassum horneri by Celluclast-assisted extraction, followed by step gradient ethanol precipitation. The protective effect of SHC4 was investigated in human keratinocytes against UVB-induced oxidative stress. The purified fucoidan was characterized by Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), agarose gel-based molecular weight analysis and monosaccharide composition analysis. SHC4 had a mean molecular weight of 60 kDa, with 37.43% fucose and 28.01 ± 0.50% sulfate content. The structure was mainly composed of α-L-Fucp-(1→4) linked fucose units. SHC4 treatment dose-dependently reduced intracellular reactive oxygen species (ROS) levels and increased the cell viability of UVB exposed HaCaT keratinocytes. Moreover, SHC4 dose-dependently inhibited UVB-induced apoptotic body formation, sub-G1 accumulation of cells and DNA damage. Inhibition of apoptosis was mediated via the mitochondria-mediated pathway, re-establishing the loss of mitochondrial membrane potential. The UVB protective effect of SHC4 was facilitated by enhancing intracellular antioxidant defense via nuclear factor erythroid 2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Further studies may promote the use of SHC4 as an active ingredient in cosmetics and nutricosmetics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eui Jeong Han ◽  
Seo-Young Kim ◽  
Hee-Jin Han ◽  
Hyun-Soo Kim ◽  
Kil-Nam Kim ◽  
...  

AbstractThe present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9′-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 225 ◽  
Author(s):  
Cheol Park ◽  
Hee-Jae Cha ◽  
Su Hyun Hong ◽  
Gi-Young Kim ◽  
Suhkmann Kim ◽  
...  

Phloroglucinol (PG) is a component of phlorotannins, which are abundant in marine brown alga species. Recent studies have shown that PG is beneficial in protecting cells from oxidative stress. In this study, we evaluated the protective efficacy of PG in HaCaT human skin keratinocytes stimulated with oxidative stress (hydrogen peroxide, H2O2). The results showed that PG significantly inhibited the H2O2-induced growth inhibition in HaCaT cells, which was associated with increased expression of heme oxygenase-1 (HO-1) by the activation of nuclear factor erythroid 2-related factor-2 (Nrf2). PG remarkably reversed H2O2-induced excessive ROS production, DNA damage, and apoptosis. Additionally, H2O2-induced mitochondrial dysfunction was related to a decrease in ATP levels, and in the presence of PG, these changes were significantly impaired. Furthermore, the increases of cytosolic release of cytochrome c and ratio of Bax to Bcl-2, and the activation of caspase-9 and caspase-3 by the H2O2 were markedly abolished under the condition of PG pretreatment. However, the inhibition of HO-1 function using zinc protoporphyrin, a HO-1 inhibitor, markedly attenuated these protective effects of PG against H2O2. Overall, our results suggest that PG is able to protect HaCaT keratinocytes against oxidative stress-induced DNA damage and apoptosis through activating the Nrf2/HO-1 signaling pathway.


2010 ◽  
Vol 24 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Jheng-Hua Huang ◽  
Chieh-Chen Huang ◽  
Jia-You Fang ◽  
Cheng Yang ◽  
Chi-Ming Chan ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 432 ◽  
Author(s):  
Janice N. Averilla ◽  
Jisun Oh ◽  
Jong-Sang Kim

Based on the antioxidative effect of resveratrol (RES) in mitigating reactive oxygen species (ROS) production through the induction of nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxigenase-1 (HO-1) signaling pathway, we investigated whether the protective activity of RES against ROS-mediated cytotoxicity is mediated by intracellular carbon monoxide (CO), a product of HO-1 activity, in ultraviolet B (UVB)-irradiated human keratinocyte HaCaT cells. The cells were exposed to UVB radiation following treatment with RES and/or CO-releasing molecule-2 (CORM-2). RES and/or CORM-2 upregulated HO-1 protein expression, accompanied by a gradual reduction of UVB-induced intracellular ROS levels. CORM-2 reduced intracellular ROS in the presence of tin protoporphyrin IX, an HO-1 inhibitor, indicating that the cytoprotection observed was mediated by intracellular CO and not by HO-1 itself. Moreover, CORM-2 decreased RES-stimulated mitochondrial quantity and respiration and increased the cytosolic protein expressions of radical-scavenging superoxide dismutases, SOD1 and SOD2. Taken together, our observations suggest that RES and intracellular CO act independently, at least partly, in attenuating cellular oxidative stress by promoting antioxidant enzyme expressions and inhibiting mitochondrial respiration in UVB-exposed keratinocytes.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 474
Author(s):  
Mawalle Kankanamge Hasitha Madhawa Dias ◽  
Dissanayaka Mudiyanselage Dinesh Madusanka ◽  
Eui Jeong Han ◽  
Min Ju Kim ◽  
You-Jin Jeon ◽  
...  

The emergence of fine dust (FD) among air pollutants has taken a toll during the past few decades, and it has provided both controversy and a platform for open conversation amongst world powers for finding sustainable solutions and effective treatments for health issues. The present study emphasizes the protective effects of (–)-loliolide (HTT) isolated from Sargassum horneri against FD-induced oxidative stress in human HaCaT keratinocytes. The purification of (–)-loliolide was carried out by centrifugal partition chromatography. HTT did not show any cytotoxicity, and it further illustrated the potential to increase cell viability by reducing the reactive oxygen species (ROS) production in FD-stimulated keratinocytes. Furthermore, HTT suppressed FD-stimulated DNA damage and the formation of apoptotic bodies, and it reduced the population of cells in the sub-G1 apoptosis phase. FD-induced apoptosis was advancing through the mitochondria-mediated apoptosis pathway. The cytoprotective effects of the HTT against FD-stimulated oxidative damage is mediated through squaring the nuclear factor E2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) pathway, dose-dependently increasing HO-1 and NAD(P)H dehydrogenase (quinone) 1 (NQO1) levels in the cytosol while concomitantly improving the nuclear translocation of Nrf2. Future studies could implement the protective functionality of HTT in producing pharmaceuticals that utilize natural products and benefit the diseased.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 286 ◽  
Author(s):  
Young-In Kim ◽  
Won-Seok Oh ◽  
Phil Song ◽  
Sungho Yun ◽  
Young-Sam Kwon ◽  
...  

Ultraviolet (UV) B exposure induces DNA damage and production of reactive oxygen species (ROS), which causes skin photoaging through signaling pathways of inflammation and modulation of extracellular matrix remodeling proteins, collagens, and matrix metalloproteinase (MMP). As low molecular-weight fucoidan (LMF) has potential antioxidant and anti-inflammatory properties, we examined the protective effects of LMF against UVB-induced photoaging. A UVB-irradiated mouse model was topically treated with myricetin or LMF at 2.0, 1.0 and 0.2 mg/cm2 (LMF2.0, LMF1.0 and LMF0.2, respectively) once a day for 15 weeks. Wrinkle formation, inflammation, oxidative stress, MMP expression, and apoptosis in the treated regions were compared with those in a distilled water-treated photoaging model (UVB control). LMF treatments, particularly LMF2.0 and LMF1.0, significantly inhibited the wrinkle formation, skin edema, and neutrophil recruitment into the photo-damaged lesions, compared with those in the UVB control. While LMF decreased interleukin (IL)-1β release, it increased IL-10. The LMF treatment inhibited the oxidative stresses (malondialdehyde and superoxide anion) and enhanced endogenous antioxidants (glutathione). Additionally, LMF reduced the mRNA expression of MMP-1, 9, and 13. The histopathological analyses revealed the anti-photoaging effects of LMF exerted via its antioxidant, anti-apoptotic, and MMP-9-inhibiting effects. These suggest that LMF can be used as a skin-protective remedy for photoaging.


Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 152 ◽  
Author(s):  
Shiu-Jau Chen ◽  
Ching-Ju Lee ◽  
Tzer-Bin Lin ◽  
Hsien-Yu Peng ◽  
Hsiang-Jui Liu ◽  
...  

Fucoxanthin is a carotenoid with many pharmaceutical properties that is found in brown seaweed. However, the effects of fucoxanthin on corneal innervation and intense eye pain have not been extensively examined. To clarify the protective roles and underlying mechanisms of fucoxanthin on ocular lesions, we investigated the beneficial effects and mechanisms by which fucoxanthin ameliorates ultraviolet B (UVB)-induced corneal denervation and trigeminal pain. Treatment with fucoxanthin enhanced the expression of nuclear factor erythroid 2-related factor 2 in the cornea. Inhibition of typical denervation and epithelial exfoliation in the cornea were observed in rats treated with fucoxanthin following UVB-induced nerve disorders. Moreover, the active phosphorylated form of p38 MAP kinase (pp38) and the number of glial fibrillary acidic protein (GFAP)-positive neural cells were significantly reduced. Decreased expression of neuron-selective transient receptor potential vanilloid type 1 (TRPV1) in the trigeminal ganglia neurons was also demonstrated in rats treated with fucoxanthin after UVB-induced keratitis. Symptoms of inflammatory pain, including difficulty in opening the eyes and eye wipe behaviour, were also reduced in fucoxanthin-treated groups. Pre-treatment with fucoxanthin may protect the eyes from denervation and inhibit trigeminal pain in UVB-induced photokeratitis models.


Sign in / Sign up

Export Citation Format

Share Document