scholarly journals Association of Circulating Heme Oxygenase-1, Lipid Profile and Coronary Disease Phenotype in Patients with Chronic Coronary Syndrome

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2002
Author(s):  
Chiara Caselli ◽  
Raffaele De Caterina ◽  
Rosetta Ragusa ◽  
Riccardo Liga ◽  
Alessia Gimelli ◽  
...  

Background. The NF-E2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway has an emerging role in atherosclerosis. Activated by oxidative stress, it is deemed to exert athero-protective effects. We aimed at evaluating the relationships between plasma HO-1, clinical/molecular profiles and coronary disease patterns in patients with chronic coronary syndromes (CCS). Methods. HO-1 was measured in 526 patients (60 ± 9 years, 318 males) with CCS. Coronary computed tomography angiography (CTA) and stress imaging were used to assess the disease phenotype (coronary atherosclerosis and myocardial ischemia) in a subgroup of 347 patients. Results. In the overall population, HO-1 median value (25–75 percentile) was 5.195 (1.75–8.25) ng/mL. Patients with higher HO-1 were more frequently male, had a higher BMI and lower LVEF%, but otherwise similar risk factors than the other patients. Their bio-humoral profile was characterized by higher markers of endothelial/myocardial dysfunction, but lower levels of cholesterol lipoproteins. Coronary artery disease was characterized by more diffuse atherosclerosis, with mainly non-obstructive and calcified plaques, and a higher prevalence of functional ischemia. Conclusion: In patients with CCS, higher plasma HO-1 levels are associated with lower cholesterol and a more diffuse but mainly non-obstructive coronary atherosclerosis, confirming a potential role for the Nrf2/HO-1 pathway as a protective feedback.

2019 ◽  
Vol 67 (2) ◽  

Moderate endurance training is known to improve cardiovascular risk factors, and prolongs life expectancy. On the other hand, there has been some discussion whether “too much” exercise might have a contrarious effect by accelerating coronary atherosclerosis. The goal of this review was to evaluate the current literature on the effects of long-term vigorous endurance training on the coronary vasculature. In summary, data point to an increased calcium score, and a higher burden of atherosclerotic plaque in male athletes compared to sedentary controls. However, the plaques found in athletes were more prone to be calcified. The pathogenesis and clinical relevance of this athlete coronary artery disease phenotype remains incompletely understood and represents an area of important future work.


2019 ◽  
Vol 67 (2) ◽  

Moderate endurance training is known to improve cardiovascular risk factors, and prolongs life expectancy. On the other hand, there has been some discussion whether “too much” exercise might have a contrarious effect by accelerating coronary atherosclerosis. The goal of this review was to evaluate the current literature on the effects of long-term vigorous endurance training on the coronary vasculature. In summary, data point to an increased calcium score, and a higher burden of atherosclerotic plaque in male athletes compared to sedentary controls. However, the plaques found in athletes were more prone to be calcified. The pathogenesis and clinical relevance of this athlete coronary artery disease phenotype remains incompletely understood and represents an area of important future work.


2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 419
Author(s):  
Yohei Sanada ◽  
Sho Joseph Ozaki Tan ◽  
Nobuo Adachi ◽  
Shigeru Miyaki

Osteoarthritis (OA) is a common aging-associated disease that clinically manifests as joint pain, mobility limitations, and compromised quality of life. Today, OA treatment is limited to pain management and joint arthroplasty at the later stages of disease progression. OA pathogenesis is predominantly mediated by oxidative damage to joint cartilage extracellular matrix and local cells such as chondrocytes, osteoclasts, osteoblasts, and synovial fibroblasts. Under normal conditions, cells prevent the accumulation of reactive oxygen species (ROS) under oxidatively stressful conditions through their adaptive cytoprotective mechanisms. Heme oxygenase-1 (HO-1) is an iron-dependent cytoprotective enzyme that functions as the inducible form of HO. HO-1 and its metabolites carbon monoxide and biliverdin contribute towards the maintenance of redox homeostasis. HO-1 expression is primarily regulated at the transcriptional level through transcriptional factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), specificity protein 1 (Sp1), transcriptional repressor BTB-and-CNC homology 1 (Bach1), and epigenetic regulation. Several studies report that HO-1 expression can be regulated using various antioxidative factors and chemical compounds, suggesting therapeutic implications in OA pathogenesis as well as in the wider context of joint disease. Here, we review the protective role of HO-1 in OA with a focus on the regulatory mechanisms that mediate HO-1 activity.


2018 ◽  
Vol 32 ◽  
pp. 71
Author(s):  
Yoshimi Kishimoto ◽  
Susumu Ibe ◽  
Emi Saita ◽  
Kenji Sasaki ◽  
Hanako Niki ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 554
Author(s):  
Hye-Jin Park ◽  
Ha-Neul Kim ◽  
Chul Young Kim ◽  
Min-Duk Seo ◽  
Seung-Hoon Baek

Dendropanax morbifera leaves (DML) have long been used as traditional medicine to treat diverse symptoms in Korea. Ethyl acetate-soluble extracts of DML (DMLE) rescued HT22 mouse hippocampal neuronal cells from glutamate (Glu)-induced oxidative cell death; however, the protective compounds and mechanisms remain unknown. Here, we aimed to identify the neuroprotective ingredients and mechanisms of DMLE in the Glu-HT22 cell model. Five antioxidant compounds were isolated from DMLE and characterized as chlorogenic acid, hyperoside, isoquercitrin, quercetin, and rutin by spectroscopic methods. Isoquercitrin and quercetin significantly inhibited Glu-induced oxidative cell death by restoring intracellular reactive oxygen species (ROS) levels and mitochondrial superoxide generation, Ca2+ dysregulation, mitochondrial dysfunction, and nuclear translocation of apoptosis-inducing factor. These two compounds significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the presence or absence of Glu treatment. Combinatorial treatment of the five compounds based on the equivalent concentrations in DMLE showed that significant protection was found only in the cells cotreated with isoquercitrin and quercetin, both of whom showed prominent synergism, as assessed by drug–drug interaction analysis. These findings suggest that isoquercitrin and quercetin are the active principles representing the protective effects of DMLE, and these effects were mediated by the Nrf2/HO-1 pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongwei Yu ◽  
Wenjun Han ◽  
Changli Wang ◽  
Daming Sui ◽  
Jinjun Bian ◽  
...  

Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Eun Sik Choi ◽  
Yun Jung Lee ◽  
Chang Seob Seo ◽  
Jung Joo Yoon ◽  
Byung Hyuk Han ◽  
...  

Samul-Tang (Si-Wu-Tang, SMT), composed of four medicinal herbs, is a well-known herbal formula treating hematological disorder or gynecologic disease. However, vascular protective effects of SMT and its molecular mechanisms on the vascular endothelium, known as the central spot of vascular inflammatory process, are not reported. The aim of this study was to investigate vascular protective effects of SMT water extract in human umbilical vein endothelial cells (HUVECs). Water extract of SMT was prepared and identified by HPLC-PDA analysis. Expression of cell adhesion molecules (CAMs) and heme oxygenase-1 (HO-1) and translocation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined by western blot. Nuclear localization of NF-κB and Nrf2 was visualized by immunofluorescence and DNA binding activity of NF-κB was measured. ROS production, HL-60 monocyte adhesion, and intracellular nitric oxide (NO) were also measured using a fluorescent indicator. SMT suppressed NF-κB translocation and activation as well as expression of CAMs, monocyte adhesion, and ROS production induced by TNF-αin HUVECs. SMT treated HUVECs showed upregulation of HO-1 and NO which are responsible for vascular protective action. Our study suggests that SMT, a traditionally used herbal formula, protects the vascular endothelium from inflammation and might be used as a promising vascular protective drug.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jia Shi ◽  
Shi-Han Du ◽  
Jian-Bo Yu ◽  
Yan-Fang Zhang ◽  
Si-Meng He ◽  
...  

Various pharmacological agents and protective methods have been shown to reverse pneumoperitoneum-related lung injury, but identifying the best strategy is challenging. Herein, we employed lung tissues and blood samples from C57BL/6 mice with pneumoperitoneum-induced lung injury and blood samples from patients who received laparoscopic gynecological surgery to investigate the therapeutic role of hydromorphone in pneumoperitoneum-induced lung injury along with the underlying mechanism. We found that pretreatment with hydromorphone alleviated lung injury in mice that underwent CO2 insufflation, decreased the levels of myeloperoxidase (MPO), total oxidant status (TOS), and oxidative stress index (OSI), and increased total antioxidant status (TAS). In addition, after pretreatment with hydromorphone, upregulated HO-1 protein expression, reduced mitochondrial DNA content, and improved mitochondrial morphology and dynamics were observed in mice subjected to pneumoperitoneum. Immunohistochemical staining also verified that hydromorphone could increase the expression of HO-1 in lung tissues in mice subjected to CO2 pneumoperitoneum. Notably, in mice treated with HO-1-siRNA, the protective effects of hydromorphone against pneumoperitoneum-induced lung injury were abolished, and hydromorphone did not have additional protective effects on mitochondria. Additionally, in clinical patients who received laparoscopic gynecological surgery, pretreatment with hydromorphone resulted in lower serum levels of club cell secretory protein-16 (CC-16) and intercellular adhesion molecule-1 (ICAM-1), a lower prooxidant-antioxidant balance (PAB), and higher heme oxygenase-1 (HO-1) activity than morphine pretreatment. Collectively, our results suggest that hydromorphone protects against CO2 pneumoperitoneum-induced lung injury via HO-1-regulated mitochondrial dynamics and may be a promising strategy to treat CO2 pneumoperitoneum-induced lung injury.


Sign in / Sign up

Export Citation Format

Share Document