scholarly journals A New Insight into an Alternative Therapeutic Approach to Restore Redox Homeostasis and Functional Mitochondria in Neurodegenerative Diseases

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Dong-Hoon Hyun ◽  
Jaewang Lee

Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.

2021 ◽  
Vol 22 (2) ◽  
pp. 934
Author(s):  
Woon-Man Kung ◽  
Muh-Shi Lin

Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-β (PPAR-β) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Shailendra P Singh ◽  
Maayan Waldman ◽  
Joseph Schragenheim ◽  
Lars Bellner ◽  
Jian Cao ◽  
...  

Background/Objectives: Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). Hypothesis: We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) activity, which controls mitochondrial function, oxidative metabolism and may also increase antioxidants and HO-1 gene expression. Methods: C57/B16 mice were fed a high fat (HF) diet for 26 wks. The protocol comprised three groups: A) WT, B) HF control and C) HF-treated with EET agonist (EET-A). Renal and visceral fat tissues were harvested to measure signaling protein. Consumption was measured at 6 and 24 wks. Mice were used to assess insulin levels, insulin sensitivity, blood pressure and mitochondrial OXPHOS and mitochondrial biogenesis (Mfn1, 2 and Opa1), and oxygen consumption (VO 2 ). Results: Animals on a HF diet exhibited increased body weight, fat content, fasting blood glucose levels, systolic blood pressure (BP) and a significant reduction in VO 2 . Administration of EET-A to HF-fed mice decreased the RQ (VCO 2 /VO 2 ) ratio and normalized BP. The HF diet produced increased levels of the adipogenic markers MEST, aP2, C/EBPα and FAS. EET-A attenuated these perturbations through an increase in renal and adipose tissue PGC1α levels. The EET-mediated HO-1 induction increased mitochondrial function as measured by OXPHOS, MnSOD and thermogenic genes, TFAM, UCP1 and SIRT 1. EET-A also increased adiponectin levels, and insulin receptor phosphorylation IRP Tyr 972 and 1146 and normalized glucose levels. Conclusion: These data show that an EET agonist increased PGC-1α-HO-1 levels thereby providing metabolic protection and increased VO 2 consumption in HF-induced obesity in mice. This novel finding suggests that the EET-mediated PGC-1α activation is essential to increase HO-1 levels, mitochondrial biogenesis, and to decrease mitochondrial ROS and adiposity.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1101 ◽  
Author(s):  
Jin Yu ◽  
Hong Zhu ◽  
Saeid Taheri ◽  
Stephen Perry ◽  
Mark Kindy

The consumption of fruits and vegetables appears to help with maintaining an adequate level of exercise and improves endurance. However, the mechanisms that are involved in this process are not well understood. In the current study, the impact of diets enriched in fruits and vegetables (GrandFusion®) on exercise endurance was examined in a mouse model. GrandFusion (GF) diets increased mitochondrial DNA and enzyme activity, while they also stimulated mitochondrial mRNA synthesis in vivo. GF diets increased both the mRNA expression of factors involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (Tfam), estrogen-related receptor alpha (ERRα), nuclear respiratory factor 1 (NRF-1), cytochrome c oxidase IV (COXIV) and ATP synthase (ATPsyn). Mice treated with GF diets showed an increase in running endurance, rotarod perseverance and grip strength when compared to controls who were on a regular diet. In addition, GF diets increased the protein expression of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α and peroxisome proliferator-activated receptor delta (PPAR-δ), which was greater than exercise-related changes. Finally, GF reduced the expression of phosphorylated ribosomal protein S6 kinase 1 (p-S6K1) and decreased autophagy. These results demonstrate that GF diets enhance exercise endurance, which is mediated via mitochondrial biogenesis and function.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2023 ◽  
Author(s):  
Junnan Ma ◽  
Seok Yong Kang ◽  
Xianglong Meng ◽  
An Na Kang ◽  
Jong Hun Park ◽  
...  

With the aging process, a loss of skeletal muscle mass and dysfunction related to metabolic syndrome is observed in older people. Yams are commonly use in functional foods and medications with various effects. The present study was conducted to investigate the effects of rhizome extract of Dioscorea batatas (Dioscoreae Rhizoma, Chinese yam) and its bioactive compound, allantoin, on myoblast differentiation and mitochondrial biogenesis in skeletal muscle cells. Yams were extracted in water and allantoin was analyzed by high performance liquid chromatography (HPLC). The expression of myosin heavy chain (MyHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), sirtuin-1 (Sirt-1), nuclear respiratory factor-1 (NRF-1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) or western blot. The glucose levels and total ATP contents were measured by glucose consumption, glucose uptake and ATP assays, respectively. Treatment with yam extract (1 mg/mL) and allantoin (0.2 and 0.5 mM) significantly increased MyHC expression compared with non-treated myotubes. Yam extract and allantoin significantly increased the expression of PGC-1α, Sirt-1, NRF-1 and TFAM, as well as the phosphorylation of AMPK and ACC in C2C12 myotubes. Furthermore, yam extract and allantoin significantly increased glucose uptake levels and ATP contents. Finally, HPLC analysis revealed that the yam water extract contained 1.53% of allantoin. Yam extract and allantoin stimulated myoblast differentiation into myotubes and increased energy production through the upregulation of mitochondrial biogenesis regulators. These findings indicate that yam extract and allantoin can help to prevent skeletal muscle dysfunction through the stimulation of the energy metabolism.


2012 ◽  
Vol 112 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Chien-Ting Liu ◽  
George A. Brooks

During endurance exercise, most (≈75%) of the energy derived from the oxidation of metabolic fuels and ATP hydrolysis of muscle contraction is liberated as heat, the accumulation of which leads to an increase in body temperature. For example, the temperature of exercising muscles can rise to 40°C. Although severe heat injury can be deleterious, several beneficial effects of mild heat stress (HS), such as the improvement of insulin sensitivity in patients with type 2 diabetes, have been reported. However, among all cellular events induced by mild HS from physical activities, the direct effects and mechanisms of mild HS on mitochondrial biogenesis in skeletal muscle are least characterized. AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) are key energy-sensing molecules regulating mitochondrial biogenesis. In C2C12 myotubes, we found that 1 h mild HS at 40°C upregulated both AMPK activity and SIRT1 expression, as well as increased the expression of several mitochondrial biogenesis regulatory genes including peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and transcription factors involved in mitochondrial biogenesis. In particular, PGC-1α expression was found to be transcriptionally regulated by mild HS. Additionally, after repeated mild HS for 5 days, protein levels of PGC-1α and several mitochondrial oxidative phosphorylation subunits were also upregulated. Repeated mild HS also significantly increased mitochondrial DNA copy number. In conclusion, these data show that mild HS is sufficient to induce mitochondrial biogenesis in C2C12 myotubes. Temperature-induced mitochondrial biogenesis correlates with activation of the AMPK-SIRT1-PGC-1α pathway. Therefore, it is possible that muscle heat production during exercise plays a role in mitochondrial biogenesis.


2016 ◽  
Vol 38 (2) ◽  
pp. 696-713 ◽  
Author(s):  
Dan Yang ◽  
Haimei Chen ◽  
Xu Zeng ◽  
Ping Xie ◽  
Xincun Wang ◽  
...  

Background/Aims: Comparative gene identification-58 (CGI-58), an adipose triglyceride lipase (ATGL) coactivator, strongly promotes ATGL-mediated triglyceride (TG) catabolism. Beyond its function in promoting lipolysis, other features of CGI-58 have been proposed. Here, we investigated the role of CGI-58 in the regulation of inflammatory responsiveness in macrophages. Methods: Macrophage-specific GCI-58 transgenic mice (TG) and wild type mice (WT) were fed a high fat diet (HFD), and RAW264.7 cells were treated with lipopolysaccharide (LPS). The peroxisome proliferator-activated receptor (PPAR) signaling was detected. The inflammatory responsiveness and mitochondrial function were examined. Results: TG mice showed lower serum levels of proinflammatory cytokines and better mitochondrial function in macrophages compared with WT control. Knockdown of CGI-58 in RAW264.7 cells aggravated LPS-induced inflammation and mitochondrial dysfunction. CGI-58 overexpression and silencing in macrophages induced and inhibited PPARγ expression and activity, respectively. Most importantly, the PPARγ-specific agonist rosiglitazone significantly suppressed inflammation and mitochondrial dysfunction induced by CGI-58 deficiency. Furthermore, knockdown of PPARγ in macrophages significantly dampened the role of CGI-58 in suppression of inflammation and mitochondrial dysfunction. Interestingly, CGI-58 inhibited histone deacetylation and the recruitment of histone deacetylase (HDAC) to the PPARγ promoter. Finally, ATGL deficiency did not affect inflammatory responsiveness and PPARγ signaling in macrophages. Conclusion: These results demonstrate that macrophage CGI-58 enhances PPARγ signaling and thus suppresses inflammatory responsiveness and mitochondrial dysfunction.


2020 ◽  
Vol 45 (9) ◽  
pp. 927-936
Author(s):  
Jens Frey Halling ◽  
Henriette Pilegaard

The majority of human energy metabolism occurs in skeletal muscle mitochondria emphasizing the importance of understanding the regulation of myocellular mitochondrial function. The transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) has been characterized as a major factor in the transcriptional control of several mitochondrial components. Thus, PGC-1α is often described as a master regulator of mitochondrial biogenesis as well as a central player in regulating the antioxidant defense. However, accumulating evidence suggests that PGC-1α is also involved in the complex regulation of mitochondrial quality beyond biogenesis, which includes mitochondrial network dynamics and autophagic removal of damaged mitochondria. In addition, mitochondrial reactive oxygen species production has been suggested to regulate skeletal muscle insulin sensitivity, which may also be influenced by PGC-1α. This review aims to highlight the current evidence for PGC-1α-mediated regulation of skeletal muscle mitochondrial function beyond the effects on mitochondrial biogenesis as well as the potential PGC-1α-related impact on insulin-stimulated glucose uptake in skeletal muscle. Novelty PGC-1α regulates mitochondrial biogenesis but also has effects on mitochondrial functions beyond biogenesis. Mitochondrial quality control mechanisms, including fission, fusion, and mitophagy, are regulated by PGC-1α. PGC-1α-mediated regulation of mitochondrial quality may affect age-related mitochondrial dysfunction and insulin sensitivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihui Yin ◽  
Xinyue Geng ◽  
Zhengyi Zhang ◽  
Ying Wang ◽  
Xiaoyan Gao

Neuronal mitochondrial oxidative stress induced by β-amyloid (Aβ) is an early event of Alzheimer’s disease (AD). Emerging evidence has shown that antioxidant therapy represents a promising therapeutic strategy for the treatment of AD. In this study, we investigated the antioxidant activity of rhein against Aβ1-42 oligomer-induced mitochondrial oxidative stress in primary neurons and proposed a potential antioxidant pathway involved. The results suggested that rhein significantly reduced reactive oxygen species (ROS) level, reversed the depletion of mitochondrial membrane potential, and protected neurons from oxidative stress-associated apoptosis. Moreover, further study indicated that rhein activated mitochondrial biogenesis accompanied by increased cytochrome C oxidase (CytOx) and superoxide dismutase (SOD) activities. CytOx on the respiratory chain inhibited the production of ROS from electron leakage and SOD helped to eliminate excess ROS. Finally, western blot analysis confirmed that rhein remarkedly increased the protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) together with its upstream deacetylase sirtuin 1 (SIRT1), and activated downstream transcription factor nuclear respiratory factor 1, promoting mitochondrial biogenesis. In conclusion, our results demonstrate that rhein activates mitochondrial biogenesis regulated by the SIRT1/PGC-1α pathway as an antioxidant defense system against Aβ1-42 oligomer-induced oxidative stress. These findings broaden our knowledge of improving mitochondrial biogenesis as an approach for relieving neuronal oxidative stress in AD.


2010 ◽  
Vol 47 ◽  
pp. 69-84 ◽  
Author(s):  
François R. Jornayvaz ◽  
Gerald I. Shulman

Although it is well established that physical activity increases mitochondrial content in muscle, the molecular mechanisms underlying this process have only recently been elucidated. Mitochondrial dysfunction is an important component of different diseases associated with aging, such as Type 2 diabetes and Alzheimer’s disease. PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) is a co-transcriptional regulation factor that induces mitochondrial biogenesis by activating different transcription factors, including nuclear respiratory factor 1 and nuclear respiratory factor 2, which activate mitochondrial transcription factor A. The latter drives transcription and replication of mitochondrial DNA. PGC-1α itself is regulated by several different key factors involved in mitochondrial biogenesis, which will be reviewed in this chapter. Of those, AMPK (AMP-activated protein kinase) is of major importance. AMPK acts as an energy sensor of the cell and works as a key regulator of mitochondrial biogenesis. AMPK activity has been shown to decrease with age, which may contribute to decreased mitochondrial biogenesis and function with aging. Given the potentially important role of mitochondrial dysfunction in the pathogenesis of numerous diseases and in the process of aging, understanding the molecular mechanisms regulating mitochondrial biogenesis and function may provide potentially important novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document