scholarly journals Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 119 ◽  
Author(s):  
Brooks M. Hybertson ◽  
Bifeng Gao ◽  
Swapan Bose ◽  
Joe M. McCord

Bioactive phytochemicals in Rosmarinus officinalis, Withania somnifera, and Sophora japonica have a long history of human use to promote health. In this study we examined the cellular effects of a combination of extracts from these plant sources based on specified levels of their carnosol/carnosic acid, withaferin A, and luteolin levels, respectively. Individually, these bioactive compounds have previously been shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which binds to the antioxidant response element (ARE) and regulates the expression of a wide variety of cytoprotective genes. We found that combinations of these three plant extracts act synergistically to activate the Nrf2 pathway, and we identified an optimized combination of the three agents which we named PB125 for use as a dietary supplement. Using microarray, quantitative reverse transcription-PCR, and RNA-seq technologies, we examined the gene expression induced by PB125 in HepG2 (hepatocellular carcinoma) cells, including canonical Nrf2-regulated genes, noncanonical Nrf2-regulated genes, and genes which appear to be regulated by non-Nrf2 mechanisms. Ingenuity Pathway Analysis identified Nrf2 as the primary pathway for gene expression changes by PB125. Pretreatment with PB125 protected cultured HepG2 cells against an oxidative stress challenge caused by cumene hydroperoxide exposure, by both cell viability and cell injury measurements. In summary, PB125 is a phytochemical dietary supplement comprised of extracts of three ingredients, Rosmarinus officinalis, Withania somnifera, and Sophora japonica, with specified levels of carnosol/carnosic acid, withaferin A, and luteolin, respectively. Each ingredient contributes to the activation of the Nrf2 pathway in unique ways, which leads to upregulation of cytoprotective genes and protection of cells against oxidative stress and supports the use of PB125 as a dietary supplement to promote healthy aging.

2021 ◽  
Vol 7 (1) ◽  
pp. 1-1
Author(s):  
Brooks M. Hybertson ◽  
◽  
Bifeng Gao ◽  
Joe M. McCord ◽  
◽  
...  

There has been a long history of human usage of the biologically-active phytochemicals in Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently reported on a combination of those plant materials as the PB123 dietary supplement. In the present work we extended those studies to evaluate activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 (hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary supplement.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 349 ◽  
Author(s):  
Denise Peserico ◽  
Chiara Stranieri ◽  
Ulisse Garbin ◽  
Chiara Mozzini C ◽  
Elisa Danese ◽  
...  

Background: While reperfusion is crucial for survival after an episode of ischemia, it also causes oxidative stress. Nuclear factor-E2-related factor 2 (Nrf2) and unfolded protein response (UPR) are protective against oxidative stress and endoplasmic reticulum (ER) stress. Ezetimibe, a cholesterol absorption inhibitor, has been shown to activate the AMP-activated protein kinase (AMPK)/Nrf2 pathway. In this study we evaluated whether Ezetimibe affects oxidative stress and Nrf2 and UPR gene expression in cellular models of ischemia-reperfusion (IR). Methods: Cultured cells were subjected to simulated IR with or without Ezetimibe. Results: IR significantly increased reactive oxygen species (ROS) production and the percentage of apoptotic cells without the up-regulation of Nrf2, of the related antioxidant response element (ARE) gene expression or of the pro-survival UPR activating transcription factor 6 (ATF6) gene, whereas it significantly increased the pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP). Ezetimibe significantly decreased the cellular ROS formation and apoptosis induced by IR. These effects were paralleled by the up-regulation of Nrf2/ARE and ATF6 gene expression and by a down-regulation of CHOP. We also found that Nrf2 activation was dependent on AMPK, since Compound C, a pan inhibitor of p-AMPK, blunted the activation of Nrf2. Conclusions: Ezetimibe counteracts IR-induced oxidative stress and induces Nrf2 and UPR pathway activation.


2019 ◽  
Vol 20 (13) ◽  
pp. 3208 ◽  
Author(s):  
Fabiane Valentini Francisqueti-Ferron ◽  
Artur Junio Togneri Ferron ◽  
Jéssica Leite Garcia ◽  
Carol Cristina Vágula de Almeida Silva ◽  
Mariane Róvero Costa ◽  
...  

The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most common age-related diseases and bring insights for future research on the Nrf2 pathway is described. This review shows a controversial response of this transcriptional factor on the presented diseases. This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a possible therapeutic target in the treatment of age-related disorders.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4176 ◽  
Author(s):  
Sonjit Das ◽  
Saikat Dewanjee ◽  
Tarun K. Dua ◽  
Swarnalata Joardar ◽  
Pratik Chakraborty ◽  
...  

Cadmium (Cd) imparts nephrotoxicity via triggering oxidative stress and pathological signal transductions in renal cells. The present study was performed to explore the protective mechanism of carnosic acid (CA), a naturally occurring antioxidant compound, against cadmium chloride (CdCl2)-provoked nephrotoxicity employing suitable in vitro and in vivo assays. CA (5 µM) exhibited an anti-apoptotic effect against CdCl2 (40 µM) in normal kidney epithelial (NKE) cells evidenced from cell viability, image, and flow cytometry assays. In this study, CdCl2 treatment enhanced oxidative stress by triggering free radical production, suppressing the endogenous redox defence system, and inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activation in NKE cells and mouse kidneys. Moreover, CdCl2 treatment significantly endorsed apoptosis and fibrosis via activation of apoptotic and transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog (Smad)/collagen IV signalling pathways, respectively. In contrast, CA treatment significantly attenuated Cd-provoked nephrotoxicity via inhibiting free radicals, endorsing redox defence, suppressing apoptosis, and inhibiting fibrosis in renal cells in both in vitro and in vivo systems. In addition, CA treatment significantly (p < 0.05–0.01) restored blood and urine parameters to near-normal levels in mice. Histological findings further confirmed the protective role of CA against Cd-mediated nephrotoxicity. Molecular docking predicted possible interactions between CA and Nrf2/TGF-β1/Smad/collagen IV. Hence, CA was found to be a potential therapeutic agent to treat Cd-mediated nephrotoxicity.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 496 ◽  
Author(s):  
Yawang Sun ◽  
Yongjiang Wu ◽  
Zili Wang ◽  
Juncai Chen ◽  
You Yang ◽  
...  

In practical dairy production, cows are frequently subjected to inflammatory diseases, such as high-grain diet-induced subacute ruminal acidosis (SARA) as well as mastitis and metritis. Under the circumstances, lipopolysaccharide (LPS) induces oxidative stress within the cow and in the mammary epithelial cells. It has implications in practical production to alleviate oxidative stress and to optimize the lactational function of the mammary epithelial cells. This study thus aimed to investigate the antioxidative effects of dandelion aqueous extract (DAE) on LPS-induced oxidative stress and the mechanism of DAE as an antioxidant to alleviate oxidative stress through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the bovine mammary epithelial cell line MAC-T cells. The cells were cultured for 48 h in six treatments including control (without LPS and DAE), LPS (100 ng/mL), DAE10 (100 ng/mL LPS and 10 μg/mL DAE), DAE50 (100 ng/mL LPS and 50 μg/mL DAE), DAE100 (100 ng/mL LPS and 100 μg/mL DAE), and DAE200 (100 ng/mL LPS and 200 μg/mL DAE), respectively. The results showed that cell viability was reduced by LPS, and the adverse effect of LPS was suppressed with the supplementation of DAE. Lipopolysaccharide-induced oxidative stress through enhancing reactive oxygen species (ROS) production, resulted in increases in oxidative damage marker concentrations, while 10 and 50 μg/mL DAE alleviated the LPS-induced oxidative stress via scavenging cellular ROS and improving antioxidant enzyme activity. The upregulation of antioxidative gene expression in DAE treatments was promoted through activating the Nrf2 signaling pathway, with DAE at a concentration of 50 μg/mL exhibiting the highest effect. Overall, DAE acted as an effective antioxidant to inhibit LPS-induced oxidative stress and as a potential inducer of the Nrf2 signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bin Ni ◽  
Zhengsen Chen ◽  
Le Shu ◽  
Yunpeng Shao ◽  
Yi Huang ◽  
...  

Objective. To investigate the protective effect and molecular mechanism of nuclear factor E2-related factor 2 (Nrf2) pathway in interstitial cystitis (IC). Methods. We established a mouse model of IC by cyclophosphamide (CYP) in wild-type mice and Nrf2 gene knockout mice. We examined the histological and functional alterations, the changes of oxidative stress markers, and the expression of the antioxidant genes downstream of Nrf2 pathway. Results. After CYP administration, the mice showed urinary frequency and urgency, pain sensitization, decreased contractility, bladder edema, and oxidative stress disorder. Notably, the Nrf2-/- CYP mice had more severe symptoms. The mRNA and protein levels of antioxidant genes downstream of Nrf2 pathway were significantly upregulated in the Nrf2+/+ CYP mice, while there were no significant changes in the Nrf2-/- CYP mice. Conclusion. Nrf2 pathway protects bladder injury and ameliorates bladder dysfunction in IC, possibly by upregulating antioxidant genes and inhibiting oxidative stress.


2017 ◽  
Vol 8 ◽  
Author(s):  
G. R. Sharath Babu ◽  
Tamatam Anand ◽  
N. Ilaiyaraja ◽  
Farhath Khanum ◽  
N. Gopalan

2018 ◽  
Vol 2018 ◽  
pp. 1-26 ◽  
Author(s):  
Choongho Lee

Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.


Sign in / Sign up

Export Citation Format

Share Document