scholarly journals Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 366 ◽  
Author(s):  
Hollie Speer ◽  
Nathan M. D’Cunha ◽  
Natalie I. Alexopoulos ◽  
Andrew J. McKune ◽  
Nenad Naumovski

Consumption of anthocyanins (ACNs), due to their antioxidant, anti-inflammatory and anti-apoptotic effects, has been proposed for the prevention and treatment of several different diseases and conditions. ACNs are recognized as one of the leading nutraceuticals for prolonging health benefits through the attenuation of oxidative stress, and inflammatory or age-related diseases. Increased consumption of ACNs has the potential to attenuate the damage ensuing from oxidative stress, inflammation, enhance cardiometabolic health, and delay symptoms in predisposed neuropathology. A myriad of evidence supports ACN consumption as complementary or standalone treatment strategies for non-communicable diseases (NCDs) including obesity, diabetes, cardiovascular disease (CVD), neurodegenerative diseases, as well as, more recently, for the modulation of gut bacteria and bone metabolism. While these findings indicate the beneficial effects of ACN consumption, their food sources differ vastly in ACN composition and thus potentially in their physiological effects. Consumption of foods high in ACNs can be recommended for their potential beneficial health effects due to their relatively easy and accessible addition to the everyday diet.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Annamaria Tisi ◽  
Marco Feligioni ◽  
Maurizio Passacantando ◽  
Marco Ciancaglini ◽  
Rita Maccarone

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch’s membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Caterina Miceli ◽  
Yohan Santin ◽  
Nicola Manzella ◽  
Raffaele Coppini ◽  
Andrea Berti ◽  
...  

Age-associated diseases such as neurodegenerative and cardiovascular disorders are characterized by increased oxidative stress associated with autophagy dysfunction. Oleuropein aglycone (OA), the main polyphenol found in olive oil, was recently characterized as an autophagy inducer and a promising agent against neurodegeneration. It is presently unknown whether OA can have beneficial effects in a model of cardiac stress characterized by autophagy dysfunction. Here, we explored the effects of OA in cardiomyocytes with overexpression of monoamine oxidase-A (MAO-A). This enzyme, by degrading catecholamine and serotonin, produces hydrogen peroxide (H2O2), which causes oxidative stress, autophagic flux blockade, and cell necrosis. We observed that OA treatment counteracted the cytotoxic effects of MAO-A through autophagy activation, as displayed by the increase of autophagic vacuoles and autophagy-specific markers (Beclin1 and LC3-II). Moreover, the decrease in autophagosomes and the increase in autolysosomes, indicative of autophagosome-lysosome fusion, suggested a restoration of the defective autophagic flux. Most interestingly, we found that the ability of OA to confer cardioprotection through autophagy induction involved nuclear translocation and activation of the transcriptional factor EB (TFEB). Our data provide strong evidence of the beneficial effects of OA, suggesting its potential use as a nutraceutical agent against age-related pathologies involving autophagy dysfunction, including cardiovascular diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Francesco Cerullo ◽  
Giovanni Gambassi ◽  
Matteo Cesari

Sarcopenia is an age-related clinical condition characterized by the progressive loss of motor units and wasting of muscle fibers resulting in decreased muscle function. The molecular mechanisms leading to sarcopenia are not completely identified, but the increased oxidative damage occurring in muscle cells during the course of aging represents one of the most accepted underlying pathways. In fact, skeletal muscle is a highly oxygenated tissue and the generation of reactive oxygen species is particularly enhanced in both contracting and at rest conditions. It has been suggested that oral antioxidant supplementation may contribute at reducing indices of oxidative stress both in animal and human models by reinforcing the natural endogenous defenses. Aim of the present paper is to discuss present evidence related to possible benefits of oral antioxidants in the prevention and treatment of sarcopenia.


2017 ◽  
Vol 39 (01) ◽  
pp. 21-28 ◽  
Author(s):  
Mohamed Bouzid ◽  
Edith Filaire ◽  
Régis Matran ◽  
Sophie Robin ◽  
Claudine Fabre

AbstractThe hypothesis that aging and regular physical activity could influence oxidative stress has been studied by comparing antioxidant activities (superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), ascorbic acid and α-Tocopherol) and malondialdehyde level (MDA) in four groups: young sedentary (n=15; age: 20.3±2.8 years; YS), young active (n=16; age: 21.4±1.9 years; YA), old sedentary (n=15; age: 65.1±3.5 years; OS) and old active (n=17; age: 67.2±4.8 years; OA). Antioxidant activities and MDA level were assessed at rest and after an incremental exercise. There was no difference in resting antioxidant activities and lipid peroxidation between YS and OS. However, resting SOD and GR activities were higher in YA compared to OA (p<0.01 and p<0.05, respectively) and resting MDA level was higher in OA compared to YA (p<0.01). After exercise, a significant increase in SOD and GPX activities was observed in YS, YA and OA (p<0.01). Likewise, after exercise a significant increase of MDA level in YA, OS and OA (p<0.01) was observed. In addition, the comparison of YA to OA and YS to OA revealed similar antioxidant activities and lipid peroxidation between YS and OA, whereas antioxidant activities were higher in YA compared to OA. These data suggest that beneficial effects of regular physical activity in antioxidant defense and lipid peroxidation damage could be impaired by the aging process and that regular physical activity in older adults could maintain age-related decreases in antioxidant defense.


2021 ◽  
Vol 11 (2) ◽  
pp. 43-50
Author(s):  
Aline Roberta Rodrigues da Silva ◽  
Patricia Dias de Brito

Objective: To conduct an integrative review of serum levels of antioxidants and the effects of their supplementation on people living with HIV (PLHIV). Methods: A research was performed in the electronic databases LILACS and MEDLINE, using the descriptors "HIV" AND "antioxidants"; 110 publications were identified, 92 of which were available in the MEDLINE database and 3 in the LILACS database. After applying the exclusion criteria, 8 articles were selected for final evaluation.Results: The studies selected for the review were divided into 4 prospective observational studies and 4 clinical trials with supplementation of antioxidants or food sources of antioxidants. We observed that the initiation of antiretroviral therapy and its prolonged use negatively influenced the parameters of oxidative stress, and that deficiency of antioxidants was associated with more significant damage to mitochondrial DNA. Supplementation of foods that are sources of antioxidants, such as dark chocolate and spirulina, has had beneficial effects on serum lipids and antioxidant capacity. Conclusion: Clinical trials with a more robust methodology, supplementation of isolated nutrients, for more extended periods of intervention, and with the assessment of food consumption are necessary to elucidate their effects on oxidative stress in PLHIV faced with factors such as the use of antiretroviral therapy and changes in metabolic rates of this population.


2018 ◽  
Vol 24 (19) ◽  
pp. 2107-2120 ◽  
Author(s):  
Nikoletta Papaevgeniou ◽  
Niki Chondrogianni

Polyphenols constitute a group of compounds that have been highly investigated for their beneficial effects against various pathologic and non-pathologic conditions and diseases. Among their multi-faceted properties, their anti-oxidant potential nominates them as ideal protective candidates for conditions characterized by elevated levels of oxidative stress, including aging and age-related diseases. The nematode Caenorhabditis elegans is a multicellular model organism that is highly exploited in studies related to aging and age-associated pathologies. In this review, we will summarize studies where polyphenolic compounds have been tested for their anti-aging potential and their protective role against the progression of age-related diseases using C. elegans as their main model.


Biology ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 30 ◽  
Author(s):  
Sunil J. Wimalawansa

Recent advances in vitamin D research indicate that this vitamin, a secosteroid hormone, has beneficial effects on several body systems other than the musculoskeletal system. Both 25 dihydroxy vitamin D [25(OH)2D] and its active hormonal form, 1,25-dihydroxyvitamin D [1,25(OH)2D] are essential for human physiological functions, including damping down inflammation and the excessive intracellular oxidative stresses. Vitamin D is one of the key controllers of systemic inflammation, oxidative stress and mitochondrial respiratory function, and thus, the aging process in humans. In turn, molecular and cellular actions form 1,25(OH)2D slow down oxidative stress, cell and tissue damage, and the aging process. On the other hand, hypovitaminosis D impairs mitochondrial functions, and enhances oxidative stress and systemic inflammation. The interaction of 1,25(OH)2D with its intracellular receptors modulates vitamin D–dependent gene transcription and activation of vitamin D-responsive elements, which triggers multiple second messenger systems. Thus, it is not surprising that hypovitaminosis D increases the incidence and severity of several age-related common diseases, such as metabolic disorders that are linked to oxidative stress. These include obesity, insulin resistance, type 2 diabetes, hypertension, pregnancy complications, memory disorders, osteoporosis, autoimmune diseases, certain cancers, and systemic inflammatory diseases. Vitamin D adequacy leads to less oxidative stress and improves mitochondrial and endocrine functions, reducing the risks of disorders, such as autoimmunity, infections, metabolic derangements, and impairment of DNA repair; all of this aids a healthy, graceful aging process. Vitamin D is also a potent anti-oxidant that facilitates balanced mitochondrial activities, preventing oxidative stress-related protein oxidation, lipid peroxidation, and DNA damage. New understandings of vitamin D-related advances in metabolomics, transcriptomics, epigenetics, in relation to its ability to control oxidative stress in conjunction with micronutrients, vitamins, and antioxidants, following normalization of serum 25(OH)D and tissue 1,25(OH)2D concentrations, likely to promise cost-effective better clinical outcomes in humans.


Sign in / Sign up

Export Citation Format

Share Document