Anti-aging and Anti-aggregation Properties of Polyphenolic Compounds in C. elegans

2018 ◽  
Vol 24 (19) ◽  
pp. 2107-2120 ◽  
Author(s):  
Nikoletta Papaevgeniou ◽  
Niki Chondrogianni

Polyphenols constitute a group of compounds that have been highly investigated for their beneficial effects against various pathologic and non-pathologic conditions and diseases. Among their multi-faceted properties, their anti-oxidant potential nominates them as ideal protective candidates for conditions characterized by elevated levels of oxidative stress, including aging and age-related diseases. The nematode Caenorhabditis elegans is a multicellular model organism that is highly exploited in studies related to aging and age-associated pathologies. In this review, we will summarize studies where polyphenolic compounds have been tested for their anti-aging potential and their protective role against the progression of age-related diseases using C. elegans as their main model.

2021 ◽  
Vol 22 (3) ◽  
pp. 1200
Author(s):  
Yoshimi Kishimoto ◽  
Kazuo Kondo ◽  
Yukihiko Momiyama

Atherosclerotic disease, such as coronary artery disease (CAD), is known to be a chronic inflammatory disease, as well as an age-related disease. Excessive oxidative stress produced by reactive oxygen species (ROS) contributes to the pathogenesis of atherosclerosis. Sestrin2 is an anti-oxidant protein that is induced by various stresses such as hypoxia, DNA damage, and oxidative stress. Sestrin2 is also suggested to be associated with aging. Sestrin2 is expressed and secreted mainly by macrophages, endothelial cells, and cardiomyocytes. Sestrin2 plays an important role in suppressing the production and accumulation of ROS, thus protecting cells from oxidative damage. Since sestrin2 is reported to have anti-oxidant and anti-inflammatory properties, it may play a protective role against the progression of atherosclerosis and may be a potential therapeutic target for the amelioration of atherosclerosis. Regarding the association between blood sestrin2 levels and atherosclerotic disease, the blood sestrin2 levels in patients with CAD or carotid atherosclerosis were reported to be high. High blood sestrin2 levels in patients with such atherosclerotic disease may reflect a compensatory response to increased oxidative stress and may help protect against the progression of atherosclerosis. This review describes the protective role of sestrin2 against the progression of atherosclerotic and cardiac diseases.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Elite Possik ◽  
Clémence Schmitt ◽  
Anfal Al-Mass ◽  
Ying Bai ◽  
Laurence Côté ◽  
...  

AbstractMetabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.


Author(s):  
Krishna Reddy BV ◽  
Avinash Kumar Reddy G ◽  
Sujitha V ◽  
Manasa A

DM otherwise diabetes is now a days an epidemic with the percentage of patient population rising to almost 10% of the world population. Out of all the DM complications, cataract leads the way contributing to disabilities to about 60% of diabetic population. But the pathogenesis of DM cataract is still a half-understood area of medicine there by posing a problem in the therapy. The data that we have till now gives us enough evidence to advocate the oxidative stress has a major role for the pathogenesis of DM complications like DMnephropathy, DMneuropathy, and cardiac hypertrophy, which suggests the oxidative stress is a central feature of diabetes. In the current research, the pharmacological evaluation of Fisetin for its DM based anti-cataract property was performed. This research concentrates to estimate the possible involvement of Nrf-2 / heme oxygenase (HO)-pathway in the observed therapeutic effect, if any. The data obtained in this study also indicate that the observed beneficial effects mainly due to activation of Nrf2/HO-1 pathway. These effects probably result in increased tissue anti-oxidant status as well as decreased free radical production, which ultimately responsible for the observed beneficial effects of Fisetin against hyperglycemia-induced cataract.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Annamaria Tisi ◽  
Marco Feligioni ◽  
Maurizio Passacantando ◽  
Marco Ciancaglini ◽  
Rita Maccarone

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch’s membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4317
Author(s):  
Yan-Xi Chen ◽  
Phuong Thu Nguyen Le ◽  
Tsai-Teng Tzeng ◽  
Thu-Ha Tran ◽  
Anh Thuc Nguyen ◽  
...  

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer’s disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses β-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3194
Author(s):  
Begoña Ayuda-Durán ◽  
Susana González-Manzano ◽  
Ana M. González-Paramás ◽  
Celestino Santos-Buelga

The nematode Caenorhabditis elegans was introduced as a model organism in biological research by Sydney Brenner in the 1970s. Since then, it has been increasingly used for investigating processes such as ageing, oxidative stress, neurodegeneration, or inflammation, for which there is a high degree of homology between C. elegans and human pathways, so that the worm offers promising possibilities to study mechanisms of action and effects of phytochemicals of foods and plants. In this paper, the genes and pathways regulating oxidative stress in C. elegans are discussed, as well as the methodological approaches used for their evaluation in the worm. In particular, the following aspects are reviewed: the use of stress assays, determination of chemical and biochemical markers (e.g., ROS, carbonylated proteins, lipid peroxides or altered DNA), influence on gene expression and the employment of mutant worm strains, either carrying loss-of-function mutations or fluorescent reporters, such as the GFP.


2016 ◽  
Vol 44 (04) ◽  
pp. 785-801 ◽  
Author(s):  
Jingyun Shao ◽  
Peng Wang ◽  
An Liu ◽  
Xusheng Du ◽  
Jie Bai ◽  
...  

Punicalagin (PG), a major bioactive ingredient in pomegranate juice, has been proven to have anti-oxidative stress properties and to exert protective effects on acute lung injuries induced by lipopolysaccharides. This study aimed to investigate the effects of PG treatment on hypoxic pulmonary hypertension (HPH) and the underlying mechanisms responsible for the effects. Rats were exposed to 10% oxygen for 2 wk (8 h/day) to induce the HPH model. PG (5, 15, 45[Formula: see text]mg/kg) was orally administered 10[Formula: see text]min before hypoxia each day. PG treatments at the doses of 15 and 45[Formula: see text]mg/kg/d decreased the mean pulmonary arterial pressure (mPAP) and alleviated right ventricular hypertrophy and vascular remodeling in HPH rats. Meanwhile, PG treatment attenuated the hypoxia-induced endothelial dysfunction of pulmonary artery rings. The beneficial effects of PG treatment were associated with improved nitric oxide (NO)-cGMP signaling and reduced oxidative stress, as evidenced by decreased superoxide generation, gp91[Formula: see text] expression and nitrotyrosine content in the pulmonary arteries. Furthermore, tempol’s scavenging of oxidative stress also increased NO production and attenuated endothelial dysfunction and pulmonary hypertension in HPH rats. Combining tempol and PG did not exert additional beneficial effects compared to tempol alone. Our study indicated for the first time that PG treatment can protect against hypoxia-induced endothelial dysfunction and pulmonary hypertension in rats, which may be induced via its anti-oxidant actions.


Sign in / Sign up

Export Citation Format

Share Document