scholarly journals Nitric Oxide Modulation by Folic Acid Fortification

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 393
Author(s):  
Junsei Taira ◽  
Takayuki Ogi

Folic acid (FA) can be protected the neural tube defects (NTDs) causing nitric oxide (NO) induction, but the alleviation mechanism of the detailed FA function against NO has not yet been clarified. This study focused on elucidation of the interaction of FA and NO. FA suppressed nitrite accumulation as the NO indicator in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, then the expression of the iNOS gene due to the LPS treatment was not inhibited by FA, suggesting that FA can modulate against NO or nitrogen radicals. NOR3 (4-ethyl-2-hydroxyamino-5-nitro-3-hexenamide) as the NO donor was used for evaluation of the NO scavenging activity of FA. FA suppressed the nitrite accumulation in a dose-dependent manner. To confirm the reaction product of FA and NO (FA-NO), liquid chromatography–mass spectrometry (LC/MS) was used to measure a similar system containing NOR3 and FA, and then detected the mass numbers of the FA-NO as m/z 470.9 (M + H)+ and m/z 469.1 (M − H)−. In addition, the adducts of the FA-NO derived from 14NO and 15NO gave individual mass numbers of the isotopic ratio of nitrogen for the following products: FA-14NO, m/z 471.14 (M + H)+; m/z 469.17 (M − H)− and FA-15NO, m/z 472.16 (M + H)+; m/z 470.12 (M − H)–. To clarify the detailed NO scavenging action of FA, an electron spin resonance (ESR) study for radical detecting of the system containing carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as an NO detection reagent in the presence of NOR3 and FA was performed. The carboxy-PTI (2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl) radical produced from the reaction with NO reduced in the presence of FA showing that FA can directly scavenge NO. These results indicated that NO scavenging activity of FA reduced the accumulation of nitrite in the LPS-stimulated RAW264.7 cells. The NO modulation due to FA would be responsible for the alleviation from the failure in neural tube formation causing a high level of NO production.

2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


2000 ◽  
Vol 11 (8) ◽  
pp. 1419-1425 ◽  
Author(s):  
SONIA Q. DOI ◽  
TERRY A. JACOT ◽  
DONALD F. SELLITTI ◽  
PRZEMYSLAW HIRSZEL ◽  
MARIO H. HIRATA ◽  
...  

Abstract. Mice transgenic for bovine growth hormone (GH) develop progressive glomerulosclerosis. However, the proximal signaling events that lead to increased matrix deposition in this pathologic condition are still unclear. Components of the L-arginine metabolic pathway, especially inducible nitric oxide (NO) synthase (iNOS), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC), have been associated with glomerular scarring. In this study, mesangial cells were treated with GH, and the expression of iNOS, ODC, and OAT was determined using reverse transcription-PCR. In addition, nitrite accumulation in the conditioned media of mesangial cell cultures was measured in the presence or absence of GH. The findings revealed that GH increased iNOS transcript levels in a dose-dependent manner, with the highest levels being attained at GH concentrations of 20 to 50 ng/ml. The GH-induced increase in iNOS transcript levels was accompanied by a significant increase in nitrite concentrations in conditioned media, which was blocked by the addition of L-NG-monomethylarginine. The effect of GH (50 ng/ml) in eliciting nitrite production was as potent as that of bacterial lipopolysaccharide (10 μg/ml). The expression of OAT and ODC, in contrast, was not altered at any of the GH concentrations tested. GH receptor mRNA was also expressed by mesangial cells, independently of the GH concentration present in the cell culture medium. These data indicate that GH may interact with its receptor to regulate the L-arginine/NO pathway in mesangial cells, by directly modulating iNOS expression and NO production, without altering the arginase/OAT/ODC pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xi Tan ◽  
Yuan-Lai Wang ◽  
Xiao-Lu Yang ◽  
Dan-Dan Zhang

Artemisia anomalaS. Moore has been widely used in China to treat inflammatory diseases for hundreds of years. However, mechanisms associated with its anti-inflammatory effect are not clear. In this study, we prepared ethyl acetate, petroleum ether,n-BuOH, and aqueous extracts from ethanol extract ofArtemisia anomalaS. Moore. Comparing anti-inflammatory effects of these extracts, we found that ethyl acetate extract of this herb (EAFA) exhibited the strongest inhibitory effect on nitric oxide (NO) production in LPS/IFNγ-stimulated RAW264.7 cells. EAFA suppressed the production of NO in a time- and dose-dependent manner without eliciting cytotoxicity to RAW264.7 cells. To understand the molecular mechanism underlying EAFA’s anti-inflammatory effect, we showed that EAFA increased total cellular anti-oxidant capacity while reducing the amount of inducible nitric oxide synthase (iNOS) in stimulated RAW264.7 cells. EAFA also suppressed the expression of IL-1βand IL-6, whereas it elevates the level of heme oxygenase-1. These EAFA-induced events were apparently associated with NF-κB and MAPK signaling pathways because the DNA binding activity of p50/p65 was impaired and the activities of both ERK and JNK were decreased in EFEA-treated cells comparing to untreated cells. Our findings suggest that EAFA exerts its anti-inflammatory effect by inhibiting the expression of iNOS.


2020 ◽  
Vol 85 (4) ◽  
pp. 882-889
Author(s):  
Yan Liang ◽  
Shijiao Zha ◽  
Masanobu Tentaku ◽  
Takasi Okimura ◽  
Zedong Jiang ◽  
...  

ABSTRACT In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Min Hwangbo ◽  
Ji Yun Jung ◽  
Sung Hwan Ki ◽  
Sang Mi Park ◽  
Kyung Hwan Jegal ◽  
...  

Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine.U-bang-haequi tang(UBT) is a herbal prescription containingArctii fructusandForsythia suspensaas its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO) and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS). Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bαinduced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.


1995 ◽  
Vol 269 (2) ◽  
pp. C519-C523 ◽  
Author(s):  
J. M. Li ◽  
R. A. Fenton ◽  
B. S. Cutler ◽  
J. G. Dobson

Adenosine per se is a potent vasodilator of vascular smooth muscle. Endothelial cells modulate vascular tone via the release of nitric oxide (NO), which also elicits vasodilation. This study was undertaken to determine whether adenosine could directly stimulate endothelial cells to enhance NO production, which could subsequently reduce vascular tone. NO production was evaluated in porcine carotid artery endothelial cells (PCAEC) and human saphenous vein endothelial cells (HSVEC) seeded on multiwell plates, grown to confluence, and treated with adenosine for 1 h. The bathing medium was collected, and the NO production was determined as reflected by the formation of NO2- and NO3-. NO production by PCAEC was significantly increased by adenosine in a dose-dependent manner, whereas there was only an insignificant tendency for an increase by HSVEC. The addition of the NO synthase competitive inhibitor, NG-monomethyl-L-arginine (NMMA), or the adenosine receptor antagonist, theophylline, prevented the increase in NO production by adenosine. The results suggest that adenosine stimulates, by a receptor-mediated mechanism, the production of NO by arterial, but not by venous, endothelial cells.


2001 ◽  
Vol 281 (6) ◽  
pp. C1819-C1824 ◽  
Author(s):  
Yao Song ◽  
Jay L. Zweier ◽  
Yong Xia

Recent studies showed that heat shock protein 90 (HSP90) enhances nitric oxide (NO) synthesis from endothelial and neuronal NO synthase (eNOS and nNOS, respectively). However, these findings were based on indirect NO measurements. Moreover, although our previous studies showed that the action of HSP90 involves increased Ca2+/calmodulin (Ca2+/CaM) binding, quantitative measurements of the effect of HSP90 on CaM binding to nNOS have been lacking. With electron paramagnetic resonance spectroscopy, we directly measured NO signals from purified nNOS. HSP90 augmented NO formation from nNOS in a dose-dependent manner. Tryptophan fluorescence-quenching measurements revealed that HSP90 markedly reduced the K d of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90, P < 0.01). Ca2+ ionophore triggered strong NO production from nNOS-transfected cells, and this was significantly reduced by the HSP90 inhibitor geldanamycin. Thus these studies provide direct evidence demonstrating that HSP90 enhances nNOS catalytic function in vitro and in intact cells. The effect of HSP90 is mediated by the enhancement of CaM binding to nNOS.


2007 ◽  
Vol 75 (9) ◽  
pp. 4305-4315 ◽  
Author(s):  
Rupesh Chaturvedi ◽  
Mohammad Asim ◽  
Nuruddeen D. Lewis ◽  
Holly M. Scott Algood ◽  
Timothy L. Cover ◽  
...  

ABSTRACT Helicobacter pylori infection of the stomach causes an active immune response that includes stimulation of inducible nitric oxide (NO) synthase (iNOS) expression. Although NO can kill H. pylori, the bacterium persists indefinitely, suggesting that NO production is inadequate. We determined if the NO derived from iNOS in macrophages was dependent on the availability of its substrate, l-arginine (l-Arg). Production of NO by H. pylori-stimulated RAW 264.7 cells was dependent on the l-Arg concentration in the culture medium, and the 50% effective dose for l-Arg was 220 μM, which is above reported plasma l-Arg levels. While iNOS mRNA induction was l-Arg independent, iNOS protein increased in an l-Arg-dependent manner that did not involve changes in iNOS protein degradation. l-Lysine, an inhibitor of l-Arg uptake, attenuated H. pylori-stimulated iNOS protein expression, translation, NO levels, and killing of H. pylori. While l-Arg starvation suppressed global protein translation, at concentrations of l-Arg at which iNOS protein was only minimally expressed in response to H. pylori, global translation was fully restored and eukaryotic translation initiation factor α was dephosphorylated. H. pylori lacking the gene rocF, which codes for a bacterial arginase, induced higher levels of NO production by increasing iNOS protein levels. When murine gastric macrophages were activated with H. pylori, supraphysiologic levels of l-Arg were required to permit iNOS protein expression and NO production. These findings indicate that l-Arg is rate limiting for iNOS translation and suggest that the levels of l-Arg that occur in vivo do not permit sufficient NO generation by the host to kill H. pylori.


Sign in / Sign up

Export Citation Format

Share Document