scholarly journals Bioactive Polyphenols from Pomegranate Juice Reduce 5-Fluorouracil-Induced Intestinal Mucositis in Intestinal Epithelial Cells

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 699 ◽  
Author(s):  
Giacomo Pepe ◽  
Shara Francesca Rapa ◽  
Emanuela Salviati ◽  
Alessia Bertamino ◽  
Giulia Auriemma ◽  
...  

Intestinal epithelial cells (IECs) play a pivotal role in maintaining intestinal homeostasis. Different noxious agents, among them also anticancer therapies, can impair intestinal epithelial integrity triggering inflammation and oxidative stress. A frequent complication of chemotherapy is gastrointestinal mucositis, strongly influencing the effectiveness of therapy, increasing healthcare costs, and impairing patients’ quality of life. Different strategies are used to treat gastrointestinal mucositis, including products from natural sources. Our study focused on the effect of pomegranate (Punica granatum L.) juice extract on IEC-6 cells, both during inflammatory conditions and following treatment with 5-fluorouracil (5-FU). The polyphenolic profile of pomegranate juice was characterized in detail by Online Comprehensive two dimensional Liquid Chromatography-Mass Spectrometry. The evaluation of pomegranate juice extract in IEC-6 indicates a significant inhibition in proinflammatory factors, such as cytokines release, cyclooxygenase-2 and inducible nitric oxide synthase expression, and nitrotyrosine formation. Pomegranate also inhibited oxidative stress and adhesion protein expression. In 5-FU-treated IEC-6, pomegranate also inhibited both inflammatory and oxidative stress parameters and apoptosis. It promoted wound repair and tight junction expression. These results suggest a potential use of pomegranate as an adjuvant in the treatment of intestinal inflammatory and oxidative stress states, which also occur during chemotherapy-induced mucositis.

2022 ◽  
Vol 12 (5) ◽  
pp. 1015-1021
Author(s):  
Gen Lin ◽  
Ruichun Long ◽  
Xiaoqing Yang ◽  
Songsong Mao ◽  
Hongying Li

Objective: The present study aimed to investigate the role of etomidate in intestinal cell ischemia and hypoxia-reperfusion injury and potential mechanisms. Method: In this study, we establish the intestinal epithelial cells ischemia-reperfusion model in vitro. CCK8 was used to detect cell viability and flow cytometry assay was used to detect apoptosis levels of treated OGD/R model cells. ELISA measured the expression level of oxidative stress factors and inflammatory factors. Furthermore, western blot assay was used to detect the expression the apoptosis-related factors and TNFR-associated factors in treated OGD/R model cells. Result: Etomidate does not affect the activity of intestinal epithelial cells, and can protect intestinal epithelial cells to reduce ischemiareperfusion injury, and the expression of inflammatory factors and oxidative stress in cells with mild intestinal epithelial ischemia-reperfusion injury. Etomidate alleviates apoptosis of intestinal epithelial ischemia-reperfusion injury cells. Etomidate inhibits the activation of traf6-mediated NF-κB signal during ischemia-anoxia reperfusion of intestinal epithelial cells. Conclusion: Taken together, our study demonstrated that etomidate attenuates inflammatory response and apoptosis in intestinal epithelial cells during ischemic hypoxia-reperfusion injury and inhibits activation of NF-κB signaling regulated by TRAF6.


Author(s):  
Berta Buey ◽  
Andrea Bellés ◽  
Eva Latorre ◽  
Inés Abad ◽  
María Dolores Pérez ◽  
...  

Milk contains active molecules with important functional properties as the defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effect of lactoferrin, whey and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. Innate immune Toll-like receptors (TLR2, TLR4, and TLR9) mRNA expression, lipid peroxidation (MDA+4-HDA) and protein carbonyl levels were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 hours with different concentrations of lactoferrin, whey or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey were able to reduce the oxidative stress induced by lipopolysaccharide. Respect to TLR receptors, lactoferrin, whey and buttermilk specifically altered the expression of TLR2, TLR4 and TLR9 receptors, with a strong decrease in TLR4 expression. These results suggest that lactoferrin, whey and buttermilk could be interesting potential ingredients for functional foods as they seem to modulate oxidative stress and inflammatory response induced by TLRs activation.


2010 ◽  
Vol 299 (3) ◽  
pp. G733-G741 ◽  
Author(s):  
Sabine M. Ivison ◽  
Ce Wang ◽  
Megan E. Himmel ◽  
Jared Sheridan ◽  
Jonathan Delano ◽  
...  

Intestinal epithelial cells act as innate immune sentinels, as the first cells that encounter diarrheal pathogens. They use pattern recognition molecules such as the Toll-like receptors (TLRs) to identify molecular signals found on microbes but not host cells or food components. TLRs cannot generally distinguish the molecular signals on pathogenic bacteria from those found in commensals, yet under healthy conditions epithelial immune responses are kept in check. We hypothesized that, in the setting of tissue damage or stress, intestinal epithelial cells would upregulate their responses to TLR ligands to reflect the greater need for immediate protection against pathogens. We treated Caco-2 cells with the TLR5 agonist flagellin in the presence or absence of H2O2 and measured chemokine production and intracellular signaling pathways. H2O2 increased flagellin-induced IL-8 (CXCL8) production in a dose-dependent manner. This was associated with synergistic phosphorylation of p38 MAP kinase and with prolonged I-κB degradation and NF-κB activation. The H2O2-mediated potentiation of IL-8 production required the activity of p38, tyrosine kinases, phospholipase Cγ, and intracellular calcium, but not protein kinase C or protein kinase D. H2O2 prolonged and augmented NF-κB activation by flagellin. In contrast to IL-8, CCL20 (MIP3α) production by flagellin was reduced by H2O2, and this effect was not calcium dependent. Oxidative stress biases intestinal epithelial responses to flagellin, leading to increased production of IL-8 and decreased production of CCL20. This suggests that epithelial cells are capable of sensing the extracellular environment and adjusting their antimicrobial responses accordingly.


2007 ◽  
Vol 292 (1) ◽  
pp. G39-G52 ◽  
Author(s):  
Masahiro Iizuka ◽  
Kenji Sasaki ◽  
Yohei Hirai ◽  
Kenichi Shindo ◽  
Shiho Konno ◽  
...  

Epimorphin is a mesenchymal protein that regulates morphogenesis of epithelial cells. Our preliminary study suggested a novel function of epimorphin in enhancing survival of intestinal epithelial cells (IEC). Oxidative stress leads to cell injury and death and is suggested to be a key contributor to pathogenesis of inflammatory bowel disease. This study was conducted to determine whether epimorphin protects IEC from oxidative stress. Rat intestinal epithelial cell line IEC-6 was cultured with epimorphin (10 and 20 μg/ml), and the life span of IEC was assessed. The mean life span of IEC-6 cells was prolonged 1.9-fold ( P < 0.0006) by treatment with epimorphin. We then examined the epimorphin signaling pathways. Epimorphin phosphorylated epidermal growth factor (EGF) receptor, activated the MEK/extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and phosphatidylinositol 3 (PI3) kinase/Akt pathways, phosphorylated Bad, and induced Bcl-XL and survivin. Hydrogen peroxide (1 mM) induced cell death in 92% of IEC-6 cells, but epimorphin dramatically diminished (88.7%) cell death induced by hydrogen peroxide ( P < 0.0001). This protective effect of epimorphin was significantly attenuated by inhibitors of MEK and PI3 kinase ( P < 0.0001) or EGF receptor-neutralizing antibody ( P = 0.0007). In wound assays, the number of migrated cells in the wound area decreased (72.5%) by treatment with 30 μM hydrogen peroxide, but epimorphin increased the number of migrated cells 3.18-fold ( P < 0.0001). These results support a novel function of epimorphin in protecting IEC from oxidative stress. This anti-oxidative function of epimorphin is dramatic and is likely mediated by the activation of EGF receptors and the MEK/extracellular signal-regulated kinase and PI3 kinase/Akt signaling pathways and through the induction of anti-apoptotic factors.


Sign in / Sign up

Export Citation Format

Share Document