scholarly journals Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model

2020 ◽  
Vol 10 (1) ◽  
pp. 328 ◽  
Author(s):  
Zhehao Zhu ◽  
Wei Cheng

In sand constitutive models, it is of cardinal importance to consider a state parameter to distinguish the real dilatancy for cohesionless soils (sand), which is different from cohesive soils (clay). Thus, one of the key issues in simulating the sand behaviour is the better representation and parameter calibration of critical state line (CSL) for estimating contraction in loose state and dilatancy in dense state, respectively. For this purpose, a new exponential form for CSL with two model constants a and b has been presented in the literature. This paper provides a valuable insight into the two model constants, controlling the shape of the critical state line by simulating a uniform quartz reference sand (Hostun RF) in loose and dense states under undrained triaxial conditions. It can be concluded that the liquefaction behaviour in loose state is fundamentally affected by even a minor variation in model constant a , but insensitive to model constant b . Moreover, the linear fitting calibration of CSL recommended in the literature is complicated in consideration of the non-unified critical state line. Thus, the maximum void ratio in the natural state could be considered as a comparison basis on which to evaluate the liquefaction potential as an alternative. The numerical results showed good agreement with real experimental data. However, in dense state, the dilatant behaviour of sand was found to be mainly controlled by model parameter b . In addition, the influence of a non-unified critical state under various confining pressures on the determination of b should not be neglected. With the correction of b , the numerical results were found to be consistent with the experimental data concerning Hostun RF sand.

1985 ◽  
Vol 50 (11) ◽  
pp. 2381-2395
Author(s):  
Alena Brunovská ◽  
Ján Buriánek ◽  
Ján Ilavský ◽  
Ján Valtýni

The diffusion and the shell progressive models of deactivation caused by irreversible chemisorption of a catalytic poison are presented for a single catalyst pellet. The method for solution of the model equations is proposed. The numerical results are compared with experimental data obtained by measuring concentration and temperature changes due to thiophene poisoning in benzene hydrogenation over a nickel-alumina catalyst.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


2010 ◽  
Vol 47 (4) ◽  
pp. 400-412 ◽  
Author(s):  
Dariusz Wanatowski ◽  
Jian Chu ◽  
Wai Lay Loke

Flowslide or failure of loose granular soil slopes is often explained using liquefaction or instability data obtained from undrained triaxial tests. However, under static loading conditions, the assumption of an undrained condition is not realistic for sand, particularly clean sand. Case studies have indicated that instability of granular soil can occur under essentially drained conditions (e.g., the Wachusett Dam failure in 1907). Laboratory studies on Changi sand by Chu et al. in 2003 have shown that sand can become unstable under completely drained conditions. However, these studies were carried out under axisymmetric conditions and thus, cannot be applied directly to the analysis of slope failures. In this paper, experimental data obtained from plane-strain tests are presented to study the instability behaviour of loose and dense sand under plane-strain conditions. Based on these test data, the conditions for the occurrence of drained instability in plane strain are established. Using the modified state parameter, the conditions for instability under both axisymmetric and plane-strain conditions can be unified. A framework for interpreting the instability conditions of sandy slopes developed under axisymmetric conditions also extends into plane-strain conditions.


1983 ◽  
Vol 105 (3) ◽  
pp. 268-274 ◽  
Author(s):  
C. J. Chuong ◽  
Y. C. Fung

A three-dimensional stress-strain relationship derived from a strain energy function of the exponential form is proposed for the arterial wall. The material constants are identified from experimental data on rabbit arteries subjected to inflation and longitudinal stretch in the physiological range. The objectives are: 1) to show that such a procedure is feasible and practical, and 2) to call attention to the very large variations in stresses and strains across the vessel wall under the assumptions that the tissue is incompressible and stress-free when all external load is removed.


2012 ◽  
Vol 152-154 ◽  
pp. 1313-1318
Author(s):  
Tao Lu ◽  
Su Mei Liu ◽  
Ping Wang ◽  
Wei Yyu Zhu

Velocity fluctuations in a mixing T-junction were simulated in FLUENT using large-eddy simulation (LES) turbulent flow model with sub-grid scale (SGS) Smagorinsky–Lilly (SL) model. The normalized mean and root mean square velocities are used to describe the time-averaged velocities and the velocities fluctuation intensities. Comparison of the numerical results with experimental data shows that the LES model is valid for predicting the flow of mixing in a T-junction junction. The numerical results reveal the velocity distributions and fluctuations are basically symmetrical and the fluctuation at the upstream of the downstream of the main duct is stronger than that at the downstream of the downstream of the main duct.


2017 ◽  
Vol 54 (10) ◽  
pp. 1460-1471 ◽  
Author(s):  
Katherine A. Kwa ◽  
David W. Airey

This study uses a critical state soil mechanics perspective to understand the mechanics behind the liquefaction of metallic ores during transport by ship. These metallic ores are transported at relatively low densities and have variable gradings containing a wide range of particle sizes and fines contents. The effect of the fines content on the location of the critical state line (CSL) and the cyclic liquefaction behaviour of well-graded materials was investigated by performing saturated, standard drained and undrained monotonic and compression-only cyclic triaxial tests. Samples were prepared at four different gradings containing particle sizes from 9.5 mm to 2 μm with fines (<75 μm) contents of 18%, 28%, 40%, and 60%. In the e versus log[Formula: see text] plane, where e is void ratio and [Formula: see text] is mean effective stress, the CSLs shifted upwards approximately parallel to one another as the fines content was increased. Transitional soil behaviour was observed in samples containing 28%, 40%, and 60% fines. A sample’s cyclic resistance to liquefaction depended on a combination of its density and state parameter, which were both related to the fines content. Samples with the same densities were more resistant to cyclic failure if they contained higher fines contents. The state parameter provided a useful prediction for general behavioural trends of all fines contents studied.


Author(s):  
H. T. Banks ◽  
C. A. Smith

Abstract In this presentation we will report on joint efforts with D.J. Inman and his colleagues at MSL, SUNY at Buffalo, to develop viable models for the analysis and control of elastic structures exhibiting coupled torsional and flexural vibrations. A model for coupled torsion and bending is developed which incorporates Kelvin Voigt damping and warping. Approximation techniques are introduced and preliminary numerical results are discussed. Experimental data is presented and used to test our computational results.


2002 ◽  
Vol 4 (1) ◽  
pp. 21-38 ◽  
Author(s):  
C. E. Kelly ◽  
R. D. Leek ◽  
H. M. Byrne ◽  
S. M. Cox ◽  
A. L. Harris ◽  
...  

In this paper a mathematical model that describes macrophage infiltration into avascular tumours is presented. The qualitative accuracy of the model is assessed by comparing numerical results with independent experimental data that describe the infiltration of macrophages into two types of spheroids: chemoattractant-producing (hepa-1) and chemoattractant-deficient (or C4) spheroids. A combination of analytical and numerical techniques are used to show how the infiltration pattern depends on the motility mechanisms involved (i.e. random motion and chemotaxis) and to explain the observed differences in macrophage infiltration into the hepa-1 and C4 spheroids. Model predictions are generated to show how the spheroid's size and spatial structure and the ability of its constituent cells influence macrophage infiltration. For example, chemoattractant-producing spheroids are shown to recruit larger numbers of macrophages than chemoattractant-deficient spheroids of the same size and spatial structure. The biological implications of these results are also discussed briefly.


Author(s):  
Johannes W. Koopman ◽  
Peter Griebel ◽  
Christoph Hassa

The flow in a three sector model, representing a segment of an annular rich quench lean combustor for an aeroengine is investigated. Detailed knowledge of flow, temperature and species concentration distributions is of decisive importance to control the NOx formation, essential to the RQL concept. Velocities, temperatures and species concentrations are measured. They are partly used to aquire data on the inlet boundaries in the numerical calculation and partly used to compare with the numerical results. The calculation reveals many details which are not accesable in the experiment. It also shows the effects of the specific inlet dataset. Experimental data and numerical results furnish complementary information.


Sign in / Sign up

Export Citation Format

Share Document