scholarly journals Probiotic Characteristics and Antifungal Activity of Lactobacillus plantarum and Its Impact on Fermentation of Italian Ryegrass at Low Moisture

2020 ◽  
Vol 10 (1) ◽  
pp. 417 ◽  
Author(s):  
Karnan Muthusamy ◽  
Ilavenil Soundharrajan ◽  
Srigopalram Srisesharam ◽  
Dahye Kim ◽  
Palaniselvam Kuppusamy ◽  
...  

The study aimed to investigate probiotic characteristics, and low moisture silage fermentation capability of selected lactic acid bacteria (LAB) isolated from Alfalfa (Medicago sativa L). Morphological and physiological properties, carbohydrates fermentation, enzymes, and organic acids production, anti-fungal activity, antibiotic sensitivity patterns, and probiotic characteristics (acidic and bile salt tolerances, hydrophobicity and aggregations natures) of LAB were examined. 16SrRNA sequencing was carried out to identify isolated strains. The identified strains Lactobacillus plantarum (KCC-37) and Lactobacillus plantarum (KCC-38) showed intense antifungal activity, survival tolerant in acidic and bile salt environments, cell surface and auto aggregations ability, enzymes and organic acids productions. At ensiled condition, KCC-37 and KCC-38 enhanced acidification of Italian ryegrass silages by producing a higher amount of lactic acid, a key acid for indicating silage quality with less extent to acetic acid and succinic acid at low moisture level than non-inoculated silages. Notably, the addition of mixed strains of KCC-37 and KCC-38 more potentially enhanced acidification of silage and organic acid productions than the single-culture inoculation. The overall data suggested that these strains could be used as an additive for improving the quality of the fermentation process in low moisture silage with significant probiotic characteristics.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


Author(s):  
P. O'Kiely

Silage fermentation is progressively restricted as the extent of pre-wilting increases (O'Kiely et_al., 1988). The magnitude of the improvement in silage nutritive value in response to a lactic acid bacteria inoculant could be related to the extent of the fermentation in the untreated silage. The objective of this experiment was to determine if the response in silage nutritive value to a Lactobacillus plantarum inoculant was similar at different levels of dry matter (DM) concentration.


1998 ◽  
Vol 64 (8) ◽  
pp. 2982-2987 ◽  
Author(s):  
Yimin Cai ◽  
Yoshimi Benno ◽  
Masuhiro Ogawa ◽  
Sadahiro Ohmomo ◽  
Sumio Kumai ◽  
...  

ABSTRACT Lactobacillus spp. from an inoculant andWeissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion ofd-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 andL. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.


2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


2021 ◽  
Author(s):  
Qiming Cheng ◽  
Liangyin Chen ◽  
Yulian Chen ◽  
Ping Li ◽  
Chao Chen

Abstract Background: Lactic acid bacteria have been proposed for the control of undesirable fermentation and subsequently aerobic deterioration due to their ability to produce antimicrobial metabolites in silage mass. To investigate the effect of specific LAB on silage fermentation characteristics and bacterial community composition of oat in cold region, silages were treated without additives (CK) or with three LAB strains (LB, Lactobacillus buchneri; nLP, low temperature tolerant Lactobacillus planrtarum; pLP, phenyllactic acid-producing Lactobacillus plantarum), and then stored at ambient temperature (< 20 ℃) for 30, 60 and 90 days. Results: Compared with CK, inoculation of LAB decreased final pH value, butyric acid content, ammonia-N of total N and dry matter loss of silage. Treatments with nLP and pLP increased (P < 0.05) lactic acid content, whereas LB increased (P < 0.05) acetic acid content of silage. Lactobacillus and Leuconstoc dominated in the silages with relative abundance of 68.29~96.63%. A prolonged storage period enhanced growth of Leuconstoc in pLP treated silage. In addition, pLP increased (P < 0.05) aerobic stability of silage as compared with nLP. Conclusions: In conclusion, inoculation of LAB improved silage fermentation and/or delayed aerobic deterioration by shifting bacterial community composition during ensiling. Phenyllactic acid-producing Lactobacillus plantarum as an inoculant exhibited potential for high quality silage production.


2009 ◽  
Vol 2009 ◽  
pp. 189-189
Author(s):  
M Vatandoost ◽  
M Danesh Mesgaran ◽  
A Heravi Moussavi ◽  
A Vakili

Microbial inoculants are applied to forage at the time of ensiling to accelerate the decline of pH during the initial stage of silage fermentation, to preserve plant carbohydrates through homofermentation, and to preserve plant protein by decreasing proteolysis and deamination. Thus, inoculated silages are expected to improve animal performance. Whole crop barley has a low buffering capacity and abundant fermentable carbohydrates and is considered relatively easy to ensile. Results of previous experiments indicated that lactic acid bacteria-based inoculants have the potential to improve the ensilage of whole crop barley (Kung and Ranjit, 2001). The objective of the present study was to determine the chemical composition and in situ dry matter degradability of whole crop barley silage treated with one of two different types of inoculants (Lactobacillus plantarum or mixed with Pediococcus pentosaceus plus propionbacter freudenreichii as provide 1×105 CFU of lactic acid producing bacteria plus 1×104 CFU propionbacterium per g of DM).


SCISCITATIO ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Nur Khikmah ◽  
Nunung Sulistyani

Bakteri Asam Laktat (BAL) yang terkandung dalam susu fermentasi akan menghasilkan asam-asam organik, hidrogen peroksida, diasetil, asetaldehid, asetoin, reutinin, reuterisiklin dan bakteriosin, dapat sebagai anti-Candida. Spesies Candida non-albicans seperti C. tropicalis dan C. glabrata sebagai penyebab kandidiasis oral cenderung meningkat. Tujuan penelitian ini mengetahui aktivitas antifungi susu fermentasi komersial pada Candida non-albicans dan viabilitas bakteri asam laktat di dalam susu fermentasi komersial. Aktivitas antifungi pada Candida non-albicans dilakukan dengan metode difusi sumuran. Viabilitas bakteri asam laktat dihitung berdasarkan jumlah bakteri asam laktat sebagai jumlah bakteri total (Total Plate Count). Hasil penelitian menunjukkan bahwa susu fermentasi komersial lebih mampu menghambat C. tropicalis dibandingkan C. glabrata. Viabilitas bakteri asam laktat dalam susu fermentasi komersial 107-1010 CFU/mL. Lactic Acid Bacteria (LAB) contained in fermented milk will produce organic acids, hydrogen peroxide, diacetyl, acetaldehyde, acetoin, reutinin, reuterycline and bacteriocin, as anti-Candida. Candida non-albicans species such as C. tropicalis and C. glabrata as causes of oral candidiasis tend to increase. The aim of this research was to determine the antifungal activity of commercial fermented milk against Candida non-albicans and viability of lactic acid bacteria in commercial ermented milk. The antifungal activity was determined using well diffusion method. Viability of lactic acid bacteria is calculated as Total Plate Count. The results showed that commercial fermented milk was more able to inhibit C. tropicalis compared C. glabrata. Viability of lactic acid bacteria 107-1010 CFU/mL.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1519
Author(s):  
Elvina Parlindungan ◽  
Gabriele A. Lugli ◽  
Marco Ventura ◽  
Douwe van Sinderen ◽  
Jennifer Mahony

Probiotics are defined as live microorganisms which confer health benefits to the host when administered in adequate amounts. Many lactic acid bacteria (LAB) strains have been classified as probiotics and fermented foods are an excellent source of such LAB. In this study, novel probiotic candidates from two fermented meats (pancetta and prosciutto) were isolated and characterized. LAB populations present in pancetta and prosciutto were evaluated and Lactiplantibacillus plantarum was found to be the dominant species. The antagonistic ability of selected isolates against LAB and non-LAB strains was investigated, in particular, the ability to produce anti-microbial compounds including organic acids and bacteriocins. Probiotic characteristics including antibiotic susceptibility, hydrophobicity and autoaggregation capacity; and ability to withstand simulated gastric juice, bile salt, phenol and NaCl were assessed. Among the characterized strains, L. plantarum 41G isolated from prosciutto was identified as the most robust probiotic candidate compared. Results from this study demonstrate that artisanal fermented meat is a rich source of novel strains with probiotic potential.


2019 ◽  
Vol 59 (8) ◽  
pp. 1584
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ronghao Chen ◽  
Wenxue Chen ◽  
Haiming Chen ◽  
Guanfei Zhang ◽  
Weijun Chen

Fermentation of foods by lactic acid bacteria is a useful way to improve the nutritional value of foods. In this study, the health-promoting effects of fermented papaya juices by two species, Lactobacillus acidophilus and Lactobacillus plantarum, were determined. Changes in pH, reducing sugar, organic acids, and volatile compounds were determined, and the vitamin C, total phenolic content, and flavonoid and antioxidant capacities during the fermentation process were investigated. Juices fermented by Lactobacillus acidophilus and Lactobacillus plantarum had similar changes in pH and reducing sugar content during the 48 h fermentation period. Large amounts of aroma-associated compounds and organic acids were produced, especially lactic acid, which increased significantly (p<0.05) (543.18 mg/100 mL and 571.29 mg/100 mL, resp.), improving the quality of the beverage. In contrast, the production of four antioxidant capacities in the fermented papaya juices showed different trends after 48 hours’ fermentation by two bacteria. Lactobacillus plantarum generated better antioxidant activities compared to Lactobacillus acidophilus after 48 h of fermentation. These results indicate that fermentation of papaya juice can improve its utilization and nutritional effect.


Sign in / Sign up

Export Citation Format

Share Document