scholarly journals Thermography of Asteroid and Future Applications in Space Missions

2020 ◽  
Vol 10 (6) ◽  
pp. 2158
Author(s):  
Tatsuaki Okada

The Near-Earth Asteroid 162173 Ryugu is a C-type asteroid which preserves information about the ancient Solar System and is considered enriched in volatiles such as water and organics associated with the building blocks of life, and it is a potentially hazardous object that might impact Earth. Hayabusa2 is the asteroid explorer organized by the Japan Aerospace Exploration Agency to rendezvous with the asteroid and collect surface materials to return them to Earth. Thermography has been carried out from Hayabusa2 during the asteroid proximity phase, to unveil the thermophysical properties of the primitive Solar System small body, which offered a new insight for understanding the origin and evolution of the Solar System, and demonstrated the technology for future applications in space missions. Global, local, and close-up thermal images taken from various distances from the asteroid strongly contributed to the mission success, including suitable landing site selection, safe assessment during descents into the thermal environments and hazardous boulder abundance, and the detection of deployable devices against the sunlit asteroid surface. Potential applications of thermography in future planetary missions are introduced.

2021 ◽  
Author(s):  
Toru Yada ◽  
Masanao Abe ◽  
Tatsuaki Okada ◽  
Aiko Nakato ◽  
Kasumi Yogata ◽  
...  

Abstract C-type asteroids are considered to be primitive small Solar-System bodies enriched in water and organics, providing clues for understanding the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing and on-asteroid measurements with Hayabusa2, but further studies are expected by direct analyses of returned samples. Here we describe the bulk sample mainly consisting of rugged and smooth particles of millimeter to submillimeter size, preserving physical and chemical properties as they were on the asteroid. The particle size distribution is found steeper than that of surface boulders11. Estimated grain densities of the samples have a peak around 1350 kg m-3, which is lower than that of meteorites suggests a high micro-porosity down to millimeter-scale, as estimated at centimeter-scale by thermal measurements. The extremely dark optical to near-infrared reflectance and the spectral profile with weak absorptions at 2.7 and 3.4 microns implying carbonaceous composition with indigenous aqueous alteration, respectively, match the global average of Ryugu, confirming the sample’s representativeness. Together with the absence of chondrule and Ca-Al-rich inclusion of larger than sub-mm, these features indicate Ryugu is most similar to CI chondrites but with darker, more porous and fragile characteristics.


Author(s):  
Toru Yada ◽  
Masanao Abe ◽  
Tatsuaki Okada ◽  
Aiko Nakato ◽  
Kasumi Yogata ◽  
...  

AbstractC-type asteroids1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing2–7 and on-asteroid measurements8,9 with Hayabusa2 (ref. 10). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu11, indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m−3, which is lower than that of meteorites12, suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements5,9. The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


2020 ◽  
Vol 54 (5) ◽  
pp. 5-14
Author(s):  
L.Kh. Pastushkova ◽  
◽  
K.S. Kireev ◽  
I.M. Larina ◽  
◽  
...  

The integrated response of the human proteome to re-entry g-loads following long-term space missions was studied in 13 male cosmonauts at the age of 44 ± 6 years. Examination at the landing site discovered local petechial hemorrhages into soft tissues of the back and lower legs. The paper presents a new approach to evaluation of petechia and soft tissue hemorrhages in cosmonauts on return to Earth. Proteomic analysis was performed with the use of LC-MS. Bioinformation analysis was made using Perseus, PubMed, Uniprot and ANDSystem software. Nine out of 19 significantly different (p < 0.05) proteins were related to vascular injuries directly. We described proteins with a primarily protecting effect against endothelial cells apoptosis and augmentation of vascular permeability, proteins that are responsible for blood rheology and proteins antagonistic to the main triggers of ischeamia-reperfusion injuries of the lungs, liver and other parenchymal organs.


Author(s):  
Ravit Helled ◽  
Jonathan J. Fortney

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2016 ◽  
Vol 118 (2-3) ◽  
pp. 133-158 ◽  
Author(s):  
Katherine H. Joy ◽  
Ian A. Crawford ◽  
Natalie M. Curran ◽  
Michael Zolensky ◽  
Amy F. Fagan ◽  
...  
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


2007 ◽  
Vol 3 (S248) ◽  
pp. 66-73
Author(s):  
J.-E. Arlot

AbstractThe main goal of the astrometry of solar system objects is to build dynamical models of their motions to understand their evolution, to determine physical parameters and to build accurate ephemerides for the preparation and the exploitation of space missions. For many objects, the ground-based observations are still very important because radar or observations from space probes are not available. More, the need of observations on a long period of time makes the ground-based observations necessary. The solar system objects have very different characteristics and the increase of the astrometric accuracy will depend on the objects and on their physical characteristics. The purpose of this communication is to show how to get the best astrometric accuracy.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.


Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


Sign in / Sign up

Export Citation Format

Share Document