scholarly journals Development of Equipment and Application of Machine Learning Techniques Using Frequency Response Data for Cap Damage Detection of Porcelain Insulators

2020 ◽  
Vol 10 (8) ◽  
pp. 2820 ◽  
Author(s):  
In Hyuk Choi ◽  
Ja Bin Koo ◽  
Ju Am Son ◽  
Jun Sin Yi ◽  
Young Geun Yoon ◽  
...  

The most common method for inspection of insulators is to measure the change of electrical characteristics such as electric resistance and partial discharge. However, even if there is no physical damage, these values vary depending on the temperature, humidity, and chloride content of the atmosphere. In this respect, an alternative to such methods can be the impact response test, and a frequency response function (FRF) obtained from the test has been widely used as a tool for damage detection. In this study the FRF was applied to identify the cap damage of porcelain insulators. In addition, to solve the danger of high voltage and poor field accessibility near the insulator, a device with high field applicability was developed to measure FRF from a long distance using an auto impact hammer and Micro Electro Mechanical Systems (MEMS) technology. Even though the FRF is most suitable for inspection of porcelain insulators, dynamic characteristics such as natural frequencies may vary depending on manufacturing errors, installation conditions, etc., which may cause difficulties in damage identification. To overcome this limitation, the machine learning (ML) method was applied in this study to provide a diagnostic method that ensured consistent and accurate judgment. As a result of predicting the normal and the cap damage data using the support vector machine (SVM), bagging, k-nearest neighbor (kNN), and discriminant analysis (DA) methods, the overall F1 score was over 87% and the bagging method achieved the highest accuracy. In this study, the frequency range and dynamic characteristics that are sensitive to the physical damage of the insulator were derived and, based on this, the optimum ML methods with improved equipment could provide analysis with higher accuracy and consistency than general analysis using the FRF.

2019 ◽  
Vol 10 (1) ◽  
pp. 84 ◽  
Author(s):  
In Hyuk Choi ◽  
Ja Bin Koo ◽  
Jung Wook Woo ◽  
Ju Am Son ◽  
Do Yeon Bae ◽  
...  

Frequency response signals have been used for the non-destructive evaluation of many different structures and for the integrity evaluation of porcelain insulators. However, it is difficult to accurately estimate the integrity of porcelain insulators under various environmental conditions only by using general frequency response signals. Therefore, this study used a method that extracted several features that can be derived from the frequency response signal and reduced their dimensions to select features suitable for the evaluation of the soundness of porcelain insulators. The latest machine learning techniques were used to identify correlations and not for basic feature analyses. Two machine learning models were developed using the support vector machine and ensemble methods in MATLAB. Both models showed high reliability in distinguishing between normal and defective porcelain insulators, and they could visualize the distribution area of the data by extracting quantitative values and applying machine learning, rather than simply verifying the frequency response signal.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6713
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Ehsan Saebnoori ◽  
Alireza Zarezadeh ◽  
Mohammadreza Shishesaz ◽  
...  

Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1166
Author(s):  
Deepak Kumar ◽  
Chaman Verma ◽  
Pradeep Kumar Singh ◽  
Maria Simona Raboaca ◽  
Raluca-Andreea Felseghi ◽  
...  

The present study accentuated a hybrid approach to evaluate the impact, association and discrepancies of demographic characteristics on a student’s job placement. The present study extracted several significant academic features that determine the Master of Business Administration (MBA) student placement and confirm the placed gender. This paper recommended a novel futuristic roadmap for students, parents, guardians, institutions, and companies to benefit at a certain level. Out of seven experiments, the first five experiments were conducted with deep statistical computations, and the last two experiments were performed with supervised machine learning approaches. On the one hand, the Support Vector Machine (SVM) outperformed others with the uppermost accuracy of 90% to predict the employment status. On the other hand, the Random Forest (RF) attained a maximum accuracy of 88% to recognize the gender of placed students. Further, several significant features are also recommended to identify the placement of gender and placement status. A statistical t-test at 0.05 significance level proved that the student’s gender did not influence their offered salary during job placement and MBA specializations Marketing and Finance (Mkt&Fin) and Marketing and Human Resource (Mkt&HR) (p > 0.05). Additionally, the result of the t-test also showed that gender did not affect student’s placement test percentage scores (p > 0.05) and degree streams such as Science and Technology (Sci&Tech), Commerce and Management (Comm&Mgmt). Others did not affect the offered salary (p > 0.05). Further, the χ2 test revealed a significant association between a student’s course specialization and student’s placement status (p < 0.05). It also proved that there is no significant association between a student’s degree and placement status (p > 0.05). The current study recommended automatic placement prediction with demographic impact identification for the higher educational universities and institutions that will help human communities (students, teachers, parents, institutions) to prepare for the future accordingly.


2021 ◽  
Author(s):  
Hassan Faramarzi ◽  
Seyed Mohsen Hosseini ◽  
Hamid Reza Pourghasemi ◽  
Mahdi Farnaghi

Abstract Golestan National Park is one of the oldest biosphere reserves exposed to environmental hazards due to growing demand, geographical location of the park, mountainous conditions, and developments in the last five decades. The purpose of this study was to evaluate potential environmental hazards using machine-learning techniques. In this study, maximum entropy, random forest, boosted regression tree, generalized additive model, and support vector machine methods were applied to model environmental hazards and evaluate the impact of affecting agents, their area of influence, and interactions. After data collection and preprocessing, the models were implemented, tuned, and trained, and their accuracies were determined using the receiver operating characteristic curve. The results indicate the high importance of climatic and human variables, including rainfall, temperature, presence of shepherds, and villagers for fire hazards, elevation, transit roads, temperature, and rainfall for the formation of floodplains, and elevation, transit roads, rainfall, and topographic wetness index in the occurrence of landslides in the national park. The boosted regression tree model with a ROC value of 0.98 for flooding, 0.97 for fire, and 0.93 for landslide hazards, had the best performance. The modeling estimated that, on average, 16.2% of the area of Golestan National Park has a high potential for landslides, 14% has a high potential for fire, and 7.2% has a high potential for flooding.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 21 ◽  
Author(s):  
Sukanya Panja ◽  
Sarra Rahem ◽  
Cassandra J. Chu ◽  
Antonina Mitrofanova

Background: In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective: In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches all in light of their application to therapeutic response modeling in cancer. Conclusion: We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.


Author(s):  
Amandeep Kaur ◽  
Sushma Jain ◽  
Shivani Goel ◽  
Gaurav Dhiman

Context: Code smells are symptoms, that something may be wrong in software systems that can cause complications in maintaining software quality. In literature, there exists many code smells and their identification is far from trivial. Thus, several techniques have also been proposed to automate code smell detection in order to improve software quality. Objective: This paper presents an up-to-date review of simple and hybrid machine learning based code smell detection techniques and tools. Methods: We collected all the relevant research published in this field till 2020. We extracted the data from those articles and classified them into two major categories. In addition, we compared the selected studies based on several aspects like, code smells, machine learning techniques, datasets, programming languages used by datasets, dataset size, evaluation approach, and statistical testing. Results: Majority of empirical studies have proposed machine- learning based code smell detection tools. Support vector machine and decision tree algorithms are frequently used by the researchers. Along with this, a major proportion of research is conducted on Open Source Softwares (OSS) such as, Xerces, Gantt Project and ArgoUml. Furthermore, researchers paid more attention towards Feature Envy and Long Method code smells. Conclusion: We identified several areas of open research like, need of code smell detection techniques using hybrid approaches, need of validation employing industrial datasets, etc.


Sign in / Sign up

Export Citation Format

Share Document