scholarly journals Effect of Particle Size on Mechanical Property of Bio-Treated Sand Foundation

2020 ◽  
Vol 10 (22) ◽  
pp. 8294
Author(s):  
Defeng Yang ◽  
Guobin Xu ◽  
Yu Duan

In the field of geotechnical engineering, microbially induced calcium precipitation technology is feasible and sustainable alternative to improve the engineering characteristics of sand foundation under different geological conditions for a long time. However, it is unclear how the effects of different sand particle sizes on the engineering characteristics of bio-treated sand column. The method of intermittent injection in batches was used to develop a series of bio-treated sand columns. The results showed that the mechanical properties of the bio-treated column improved by increasing the particle size. Low concentration of bacterial suspension and cementation reagent leads to the increase of calcium carbonate and unconfined compressive strength. Additionally, the total injection times increased, thus risking time cost. Furthermore, the increase of sand particle size was beneficial to the uniformity of the spatial distribution of calcium carbonate in the bio-treated column. The coefficient of variation was reduced by up to 52.0%. Scanning electron microscopy results confirmed that the size and uniformity of calcite crystals on the surface of sand particles were related to the concentration of cementation solution.

2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Manzurudin Hasan ◽  
Norasikin Othman ◽  
Siti Hamidah Mohd-Setapar ◽  
Liza Md.-Salleh ◽  
...  

Kajian ini bertujuan untuk mengkaji kesan saiz zarah ke atas pengekstrakan sebatian catechin daripada biji Areca catechu L. dengan menggunakan Pengekstrakan Pelarut Terpecut (PPT). Saiz zarah biji Areca catechu dipelbagaikan dari 75 μm sehingga 500 μm. Pengekstrakan telah dijalankan padaparameter tetap iaitu suhu (140oC), tekanan (1500 psi), masa (10 minit), isipadu semburan (60%) dan satu kitaran pengekstrakan, masing-masing. Hasil minyak peratusan yang lebih tinggi adalah 300 mg minyak / gram sampel (30.00% pati minyak) ditemui pada 125 μm. Walaubagaimanapun, kandungan catechin dalam pati minyak hanya 0.0375 mg catechin / gram sampel. Saiz zarah yang terbaik dalam julat uji kaji ini telah dikenal pasti pada 500 μm yang memberikan kandungan catechin yang tinggi iaitu 0.0515 mg catechin / gram sampel dari 247.5 mg minyak / gram sampel (24.75% pati minyak). Kata kunci: Saiz zarah; catechin; LC-MS-TOF; pengekstrakan pelarut terpecut The purpose of this work is to investigate the effects of particle size on the extraction of catechincompound from Areca catechu L. seeds by using Accelerated Solvent Extraction (ASE). The particle sizes of Areca catechu L. seeds are varied from 75 µm until 500 µm. The extraction is conducted at fixed parameters which are temperature (140oC), pressure (1500 psi), extraction time (10 minutes), flush volume (60%) and the static cycle is done for 1 extraction cycle respectively. Higher percentage oil yield of 300mg oil/gram of sample (30.00% oil yield) is found at 125 µm. However, the amount of catechin in oil yields is only 0.0375 mg of catechin/gram of sample. The best of particle size within the experimental range has been identified at 500 µm which gives a high content of catechin with 0.0515 mg Catechin/gram of sample from 247.5 mg oil/gram of sample (24.75% oil yield). Keywords: Particle size; catechin; LC-MS-TOF; accelerated solvent extraction


TAPPI Journal ◽  
2020 ◽  
Vol 19 (11) ◽  
pp. 585-593
Author(s):  
ETHAN GLOR ◽  
BRIAN EINSLA ◽  
JOHN ROPER ◽  
JIAN YANG ◽  
VALERIY GINZBURG

Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.


Author(s):  
Risa Okita ◽  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Edmund F. Rybicki

Zhang et al (2006) utilized CFD to examine the validity of erosion models that have been implemented into CFD codes to predict solid particle erosion in air and water for Inconel 625. This work is an extension of Zhang’s work and is presented as a step toward obtaining a better understanding of the effects of fluid viscosity and sand particle size on measured and calculated erosion rates. The erosion rates of Aluminum 6061-T6 were measured for direct impingement conditions of a submerged jet. Fluid viscosities of 1, 10, 25, and 50 cP and sand particle sizes of 20, 150, and 300 μm were tested. The average fluid speed of the jet was maintained at 10 m/s. Erosion data show that erosion rates for the 20 and 150 μm particles are reduced as the viscosity is increased, while surprisingly the erosion rates for the 300 μm particles do not seem to change much for the higher viscosities. For all viscosities considered, larger particles produced higher erosion rates, for the same mass of sand, than smaller particles. Concurrently, an erosion equation has been generated based on erosion testing of the same material in air. The new erosion model has been compared to available models and has been implemented into a commercially available CFD code to predict erosion rates for a variety of flow conditions, flow geometries, and particle sizes. Since particle speed and impact angle greatly influence erosion rates of the material, calculated particle speeds were compared with measurements. Comparisons reveal that, as the particles penetrate the near wall shear layer, particles in the higher viscosity liquids tend to slow down more rapidly than particles in the lower viscosity liquids. In addition, CFD predictions and particle speed measurements are used to explain why the erosion data for larger particles is less sensitive to the increased viscosities.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Carola Contreras ◽  
Fernanda Isquierdo ◽  
Pedro Pereira-Almao ◽  
Carlos E. Scott

More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm).


1993 ◽  
Vol 11 (1) ◽  
pp. 31-35
Author(s):  
Stuart L. Warren ◽  
James E. Shelton

Abstract Fraser photinia, ‘Plumosa Compacta Youngstown’ juniper and ‘Hino-Crimson’ azalea were grown in pine bark amended with a factorial combination of five rates (0, 0.9, 1.8, 3.6 and 7.2 kg/m3) (0, 1.5, 3, 6 and 12 lbs/yd3) of olivine, a magnesium ortho silicate containing 27% Mg and four particle sizes of olivine. Calcium carbonate (38% Ca) at 2.4 kg/m3 (4 lbs/yd3) was incorporated into all olivine treatments. A separate treatment utilizing 4.2 kg/m3 (7 lbs/yd3) dolomitic limestone (22% Ca, 11% Mg) was also included to serve as a comparison to dolomitic limestone. In general, Mg concentration in the media increased with increasing olivine rate and decreasing particle size. Media P, K and Ca concentration and pH were not affected by olivine rate or particle size, nor were they significantly different from the treatment containing dolomitic limestone. Foliar Mg increased with increasing olivine rate in all species. Foliar K decreased with increasing olivine rate for ‘Hino-Crimson’ azalea and Fraser photinia. Top dry weight of ‘Plumosa Compacta Youngstown’ juniper was not affected by olivine rate or particle size while top dry weight of ‘Hino-Crimson’ azalea and Fraser photinia increased quadratically with increasing olivine rate, with the maximum occurring at 0.9 kg/m3 (1.5 lbs/yd3) and 1.8 kg/m3 (3.0 lbs/yd3), respectively. These maximum top dry weights were significantly heavier than plants grown with dolomitic limestone.


Author(s):  
Jesus Djalma PÉCORA ◽  
Ricardo Gariba SILVA ◽  
Ricardo Novak SAVIOLI ◽  
Luis Pascoal VANSAN

A study was conducted on the hardening time of three Grossman's cements with different powder particle sizes (60, 100 and 150 mesh) using Specification n. 57 of the AMERICAN DENTAL ASSOCIATION1 (1983). The cement obtained from mesh 150 particles showed the longest hardening time (22 minutes), which was different when compared to mesh 60 (17 minutes) and 100 (17 minutes) particles.


2008 ◽  
Vol 31 (2) ◽  
pp. 1-13
Author(s):  
S.V. Manyele ◽  
I.F. Kahemel

An investigation of the effect of particle size on the performance of vegetable oil recovery by solvent extraction is reported. Experiments were conducted using soxhlet extractor, groundnuts and n-hexane. Samples were grouped into mean particle sizes of 0.25, 0.75, 1.3, 3.3, and 7.5 mm using standard sieves. The effect of particle size was studied for extraction time intervals of 1, 2, 3, 4, 5 and 8 hours. The oil yield, oil recovered per kg solvent used, kg solvent lost per unit time, and the rate of extraction (kg oil recovered per hour) decreased with increasing particle size. Meanwhile, the percent of solvent recovered, the ratio of oilrecovered to the total volatile matter driven off and the kg solvent lost per kg oil recovered, increased with increasing particle size. Based on the normalization of averaged extraction-parameters, a mean particle size of 3.3 mm was observed to be the optimum size.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5631
Author(s):  
Lu Wang ◽  
Shuhua Liu

This paper presents an efficient method of microbial-induced calcite precipitation (MICP) for cementation of sand particles. First, the influence of initial pH value of the culture medium on the growth of bacteria was discussed. Then, the compressive strength and calcium carbonate content of cemented sand columns with different sand particle sizes were measured to indicate the cementation effectiveness. The microstructure of cemented sand columns as well as the mineral composition and distribution of calcium carbonate were characterised by means of scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD). The results showed that the urease-producing bacteria S. pasteurii can be cultured at the initial pH values of 7–10, while a higher pH (e.g., 11) would hinder its growth and decrease its urease activity. The injection method of MICP with high standing time can cement sand columns effectively. Small average sand particle size of sand columns and high injection cycles can facilitate the gain of compressive strength, while calcium carbonate content of sand column higher than 8% can promote the increase of compressive strength. XRD results indicate that the fine grains generated on the surface of sand particles are calcite. The distribution of calcite on sand particles’ surface is broad and uniform. First, calcite was precipitated on the surface of sand particles, and then a precipitation layer was formed, which would connect sand particles through its high enough thickness and contribute to the development of compressive strength of the whole sand column.


2020 ◽  
pp. 1-19
Author(s):  
Qiuchen Wang ◽  
Qiyu Huang ◽  
Xu Sun ◽  
Jun Zhang ◽  
Soroor Karimi ◽  
...  

Abstract During petroleum production, sand particles can be entrained with the transported carrier fluid despite of any sand exclusion process and erode the inner walls of pipelines. This erosion process may even cause pipe leakage and oil spill. Therefore, investigate the regularities of erosion damage changing with particle sizes and predict erosion behavior under different sizes particles are important to pipeline safety. In this study, slurry erosion experiments are conducted using quartz particles with similar shapes and different sizes ranging from 25 micrometers to 600 micrometers to investigate the effect of particle size on erosion profiles and provide the database for evaluating models. Computational Fluid Dynamics (CFD) is used to simulate the fluid flow and track particles to obtain impact information. Erosion equations then connect the particles' impact information with erosion rate. Finally, the available mechanistic and empirical equations erosion models are evaluated by comparing predicted erosion profile with experimental data. It was found that the local maximum erosion damage increases with particle sizes although the total erosion ratio is not increasing. These changes of erosion profiles can be predicted with acceptable accuracy by available empirical erosion models when particle sizes are no less than 75 micrometers.


Sign in / Sign up

Export Citation Format

Share Document