scholarly journals Optimization of Mechanical and Setting Properties in Acrylic Bone Cements Added with Graphene Oxide

2021 ◽  
Vol 11 (11) ◽  
pp. 5185
Author(s):  
Lina Marcela Ruiz Rojas ◽  
Mayra Eliana Valencia Zapata ◽  
Marisol Gordillo Suarez ◽  
Rigoberto Advincula ◽  
Carlos David Grande-Tovar ◽  
...  

The extended use of acrylic bone cements (ABC) in orthopedics presents some disadvantages related to the generation of high temperatures during methyl methacrylate polymerization, thermal tissue necrosis, and low mechanical properties. Both weaknesses cause an increase in costs for the health system and a decrease in the patient’s quality of life due to the prosthesis’s loosening. Materials such as graphene oxide (GO) have a reinforcing effect on ABC’s mechanical and setting properties. This article shows for the first time the interactions present between the factors sonication time and GO percentage in the liquid phase, together with the percentage of benzoyl peroxide (BPO) in the solid phase, on the mechanical and setting properties established for cements in the ISO 5833-02 standard. Optimization of the factors using a completely randomized experimental design with a factorial structure resulted in selecting nine combinations that presented an increase in compression, flexion, and the setting time and decreased the maximum temperature reached during the polymerization. All of these characteristics are desirable for improving the clinical performance of cement. Those containing 0.3 wt.% of GO were highlighted from the selected formulations because all the possible combinations of the studied factors generate desirable properties for the ABC.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1773 ◽  
Author(s):  
Mayra Eliana Valencia Zapata ◽  
Lina Marcela Ruiz Rojas ◽  
José Herminsul Mina Hernández ◽  
Johannes Delgado-Ospina ◽  
Carlos David Grande Tovar

Bacterial infections are a common complication after total joint replacements (TJRs), the treatment of which is usually based on the application of antibiotic-loaded cements; however, owing to the increase in antibiotic-resistant microorganisms, the possibility of studying new antibacterial agents in acrylic bone cements (ABCs) is open. In this study, the antibacterial effect of formulations of ABCs loaded with graphene oxide (GO) between 0 and 0.5 wt.% was evaluated against Gram-positive bacteria: Bacillus cereus and Staphylococcus aureus, and Gram-negative ones: Salmonella enterica and Escherichia coli. It was found that the effect of GO was dependent on the concentration and type of bacteria: GO loadings ≥0.2 wt.% presented total inhibition of Gram-negative bacteria, while GO loadings ≥0.3 wt.% was necessary to achieve the same effect with Gram-positives bacteria. Additionally, the evaluation of some physical and mechanical properties showed that the presence of GO in cement formulations increased wettability by 17%, reduced maximum temperature during polymerization by 19%, increased setting time by 40%, and increased compressive and flexural mechanical properties by up to 17%, all of which are desirable behaviors in ABCs. The formulation of ABC loading with 0.3 wt.% GO showed great potential for use as a bone cement with antibacterial properties.


2019 ◽  
Vol 72 (5) ◽  
pp. 354 ◽  
Author(s):  
Xin Xie ◽  
Libin Pang ◽  
Aihua Yao ◽  
Song Ye ◽  
Deping Wang

A novel injectable bone cement was prepared using sol–gel derived borosilicate bioactive glass nanoparticles as a solid phase and sodium alginate solution as a liquid phase. The gelation reaction of the alginate was modulated by Ca2+ ions released from the borosilicate glass phase, which in turn greatly depended on the boron content of the borosilicate glass phase. Such a gelation reaction not only significantly enhanced the anti-washout property of the bone cements, but also allowed control of the setting, handling properties, and compressive strength of the composite bone cements. Consequently, bone cements with controllable performances can be developed by simply adjusting the B2O3/SiO2 ratio of the borosilicate glass phase. Borosilicate bioactive glass with 20–30 mol-% borate contents exhibit a short setting time, good compressive strength, injectability, and anti-washout properties. With controllable performances and excellent bioactivity, the borosilicate bioactive glass/sodium alginate (BSBG/SA) composite bone cements are highly attractive for bone filling and regeneration applications.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3860
Author(s):  
Do Quang Tham ◽  
Mai Duc Huynh ◽  
Nguyen Thi Dieu Linh ◽  
Do Thi Cam Van ◽  
Do Van Cong ◽  
...  

In this study, vinyltrimethoxysilane-treated hydroxyapatite (vHAP) and PMMA-grafted HAP (gHAP) were successfully prepared from original HAP (oHAP). Three kinds of HAP (oHAP, vHAP and g HAP) were used as additives for the preparation of three groups of HAP-modified PMMA bone cements (oHAP-BC, vHAP-BC and gHAP-BC). The setting, bending and compression properties of the bone cements were conducted according to ISO 5833:2002. The obtained results showed that the maximum temperature while curing the HAP-modified bone cements (HAP-BCs) decreased from 64.9 to 60.8 °C and the setting time increased from 8.1 to 14.0 min, respectively, with increasing HAP loading from 0 to 15 wt.%. The vHAP-BC and gHAP-BC groups exhibited higher mechanical properties than the required values in ISO 5833. Electron microscopy images showed that the vHAP and gHAP nanoparticles were dispersed better in the polymerized PMMA matrix than the oHAP nanoparticles. FTIR analysis indicated the polar interaction between the PO4 groups of the HAP nanoparticles and the ester groups of the polymerized PMMA matrix. Thermal gravimetric analysis indicated that mixtures of ZrO2/HAPs were not able to significantly improve the thermal stability of the HAP-BCs. DSC diagrams showed that the incorporation of gHAP to PMMA bone cement with loadings lower than 10 wt.% can increase Tg by about 2.4 °C.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3107 ◽  
Author(s):  
Zhihua Li ◽  
Ling Dong ◽  
Jin Jeon ◽  
So Young Kwon ◽  
Chi Zhao ◽  
...  

Doubanjiang, a Chinese traditional fermented red pepper paste, is eaten worldwide for its unique flavor. The objective of this study was to evaluate the aroma quality of doubanjiang using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). A total of 165 volatile compounds, belonging to 13 chemical classes, were identified. Esters and hydrocarbons were the predominant groups. Thirteen aroma-active compounds were detected by AEDA of SAFE and HS-SPME, and their odor activity values (OAVs) were calculated by dividing their concentration by their odor threshold in water. Among them, ethyl isovalerate, β-damascenone, 3-isobutyl-2-methoxypyrazine (IBMP), and sotolone had the highest OAVs (>1000). In addition, sotolone, methional, β-damascenone, 3-isobutyl-2-methoxypyrazine, ethyl isovalerate, phenylethyl alcohol and linalool had high flavor dilution (FD) factors. Sotolone, β-damascenone and 3-isobutyl-2-methoxypyrazine were identified for the first time in doubanjiang and played significant roles in its aroma quality.


2012 ◽  
Vol 446-449 ◽  
pp. 3318-3322
Author(s):  
Wei Tong Guo ◽  
Sheng Na Yang

Analysis the factors of mass concrete temperature crack. Combined with the Nan Yang Branch of CUCC cement clinker production line of the second phase of mass concrete construction, it proposed some measures about how to prevent the temperature stress crack of mass concrete due to hydration heat of cement generated temperature difference .By controlling the temperature of the concrete strictly, decreasing the temperature difference between inside and outside, preventing shrinkage joint, reducing the slump loss, delaying setting time, etc. To ensure from the construction maintaining process of mass concrete foundation floor, the tensile strength of concrete is always greater than the maximum temperature tensile stress to prevent temperature cracks appear ensure the quality of mass concrete construction.


2020 ◽  
Vol 5 (2) ◽  
pp. 463-478
Author(s):  
Elizabeth Crais ◽  
Melody Harrison Savage

Purpose The shortage of doctor of philosophy (PhD)–level applicants to fill academic and research positions in communication sciences and disorders (CSD) programs calls for a detailed examination of current CSD PhD educational practices and the generation of creative solutions. The intended purposes of the article are to encourage CSD faculty to examine their own PhD program practices and consider the perspectives of recent CSD PhD graduates in determining the need for possible modifications. Method The article describes the results of a survey of 240 CSD PhD graduates and their perceptions of the challenges and facilitators to completing a PhD degree; the quality of their preparation in research, teaching, and job readiness; and ways to improve PhD education. Results Two primary themes emerged from the data highlighting the need for “matchmaking.” The first time point of needed matchmaking is prior to entry among students, mentors, and expectations as well as between aspects of the program that can lead to students' success and graduation. The second important matchmaking need is between the actual PhD preparation and the realities of the graduates' career expectations, and those placed on graduates by their employers. Conclusions Within both themes, graduate's perspectives and suggestions to help guide future doctoral preparation are highlighted. The graduates' recommendations could be used by CSD PhD program faculty to enhance the quality of their program and the likelihood of student success and completion. Supplemental Material https://doi.org/10.23641/asha.11991480


2015 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Sandra J Nendissa ◽  
Rachel Breemer ◽  
Nikholaus Melamas

This objectives of this research were both to study and determine the best level of concentration of yeast Saccharomyces cereviseae and period of fermentation on the quality of tomi-tomi vinegar (Flacourtia inermis). A completely randomized experimental design with two factors of treatment was applied in this research. The first factor was concentration of yeast S. cereviseae having four levels of tretament, i.e.: without the addition of yeast 0.5, 1 and 1.5 g yeast. The second factor was period fermentation with 1, 2, 3, 4, and 5 weeks. The result indicated that the concentration of yeast S. cereviseae 1.5 g and period fermentation 5 week produced a good tomi-tomi vinegar with total acids 51.22%, total dissolved solids 8.35, total sugar 8.07% and pH 5.40.


Author(s):  
Mohamad Hossein Pourhanifeh ◽  
Kazem Abbaszadeh-Goudarzi ◽  
Mohammad Goodarzi ◽  
Sara G.M. Piccirillo ◽  
Alimohammad Shafiee ◽  
...  

: Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard anti-melanomatreatments such as chemotherapy, and 5-year survival rate of cases with melanoma who have metastatic form of disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approachesthat couldenhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy. : Herein, for first time, we summarize current knowledge of anti-cancerous activities of resveratrol in melanoma.


2020 ◽  
Vol 96 (3s) ◽  
pp. 154-159
Author(s):  
Н.Н. Егоров ◽  
С.А. Голубков ◽  
С.Д. Федотов ◽  
В.Н. Стаценко ◽  
А.А. Романов ◽  
...  

Высокая плотность структурных дефектов является основной проблемой при изготовлении электроники на гетероструктурах «кремний на сапфире» (КНС). Современный метод получения ультратонких структур КНС с помощью твердофазной эпитаксиальной рекристаллизации позволяет значительно снизить дефектность в гетероэпитаксиальном слое КНС. В данной работе ультратонкие (100 нм) слои КНС были получены путем рекристаллизации и утонения субмикронных (300 нм) слоев кремния на сапфире, обладающих различным структурным качеством. Плотность структурных дефектов в слоях КНС оценивалась с помощью рентгеноструктурного анализа и просвечивающей электронной микроскопии. Кривые качания от дифракционного отражения Si(400), полученные в ω-геометрии, продемонстрировали максимальную ширину на полувысоте пика не более 0,19-0,20° для ультратонких слоев КНС толщиной 100 нм. Формирование структурно совершенного субмикронного слоя КНС 300 нм на этапе газофазной эпитаксии обеспечивает существенное уменьшение плотности дислокаций в ультратонком кремнии на сапфире до значений ~1 • 104 см-1. Тестовые n-канальные МОП-транзисторы на ультратонких структурах КНС характеризовались подвижностью носителей в канале 725 см2 Вс-1. The high density of structural defects is the main problem on the way to the production of electronics on silicon-on-sapphire (SOS) heteroepitaxial wafers. The modern method of obtaining ultrathin SOS wafers is solid-phase epitaxial recrystallization which can significantly reduce the density of defects in the SOS heteroepitaxial layers. In the current work, ultrathin (100 nm) SOS layers were obtained by recrystallization and thinning of submicron (300 nm) SOS layers, which have various structural quality. The density of structural defects in the layers was estimated by using XRD and TEM. Full width at half maximum of rocking curves (ω-geometry) was no more than 0.19-0.20° for 100 nm ultra-thin SOS layers. The structural quality of 300 nm submicron SOS layers, which were obtained by CVD, depends on dislocation density in 100 nm ultrathin layers. The dislocation density in ultrathin SOS layers was reduced by ~1 • 104 cm-1 due to the utilization of the submicron SOS with good crystal quality. Test n-channel MOS transistors based on ultra-thin SOS wafers were characterized by electron mobility in the channel 725 cm2 V-1 s-1.


Sign in / Sign up

Export Citation Format

Share Document