scholarly journals Experimental Study on Lateral-Load-Resisting Capacity of Masonry-Infilled Reinforced Concrete Frames

2021 ◽  
Vol 11 (21) ◽  
pp. 9950
Author(s):  
Minjae Kim ◽  
Eunjong Yu

In this study, an experimental program was performed on masonry-infilled frame specimens with varied construction precision and masonry thickness. A total of five portal frame specimens, which consist of four masonry-infilled frames and a bare frame, were tested, and the results were analyzed to investigate the effects of construction precision and interaction between the masonry infill and the frame. The test results indicated that the gap in the masonry infill decreased strength by 75% to 80% and stiffness by 55% to 70%. A comparison between the measured and predicted peak strength using the current code shows that the code equations underestimate the strength by up to 70%. This is due to the fact that the contribution of friction in shear resistance of the masonry wall is actually ignored in the current code since no adequate method for estimating the normal force is provided. In addition, reflecting the observation that the failure mode of the columns changed to shear failure when thick masonry walls were used, a mechanical model that can explain the shear failure and enables the estimation of maximum strength was proposed. The maximum strengths of the specimens calculated using the proposed model were in good agreement with the experimental results.

2005 ◽  
Vol 127 (2) ◽  
pp. 186-191 ◽  
Author(s):  
S. Kunaporn ◽  
M. Ramulu ◽  
M. Hashish

Waterjet peening is a recent promising method in surface treatment. It has the potential to induce compressive residual stresses that benefit the fatigue life of materials similar to the conventional shot peening process. However, there are no analytical models that incorporate process parameters (i.e., supply pressure, jet exposure time, and nozzle traverse rate, etc) to allow predicting the optimized peening process. Mathematical modeling of high-pressure waterjet peening was developed in this study to describe the relation between the waterjet peening parameters and the resulting material modifications. Results showed the possibility of using the proposed mathematical model to predict an initial range for effective waterjet peening under the variation of waterjet peening conditions. The high cycle fatigue tests were performed to validate the proposed model and fatigue test results showed good agreement with the predictions.


Author(s):  
Navaratnarajah Sathiparan

This paper discusses the shaking table test results of three PP-band (Polypropylene band) retrofitted quarter scale one-story masonry house models with different roof conditions. Better connections between masonry wall and roof connection are one factor to improve the seismic safety of the masonry houses. Past studies show that PP-band retrofitting improves the integrity of structural components and prevent the collapse of masonry structures during an earthquake. Although the effect of masonry unit type, surface plastering, the pitch of the PP-band mesh, PP-band connectivity in mesh and tightness of the mesh attachment to walls were studied by experiment program, the effect of the roof and its diaphragm connectivity on PP-band retrofitted masonry structure is nonexistent. Therefore, an experimental program was designed and executed for an understanding the effect of the roof and its connection on the dynamic behavior of the PP-band retrofitted box-shaped masonry house models. Results reveal that the PP-band retrofitted models with proper roof diaphragm improves the seismic behavior with respect to lateral drift, shear resistance and ductility.


2022 ◽  
Vol 906 ◽  
pp. 17-23
Author(s):  
Ashot G. Tamrazyan ◽  
Yehia A.K. Sayed

A complete reorganization about the behavior of rectangular RC columns confined with FRP sheet is very important to predict the axial compressive strength values of the strengthened rectangular RC columns. That is because the process of strengthening RC rectangular column depending on several parameters that role this type of strengthening. These parameters include the characteristics of the used fiber, the grade of concrete and the geometry of the cross section including the rectangularity aspect ratio, corner radius, and size of specimens. Besides that, using a wide scope of experimental data may affect positively to generalize a model that considers the whole parameters affect the value of the axial strength. So, in this paper a review about parameters that affect the axial compressive strength values of rectangular RC columns was conducted. After that, based on the test results regarding FRP-confined rectangular RC columns available in the literature or conducted by the author, some existing confinement models for rectangular RC columns were assessed. Further, a new model is proposed through regression analysis of the database. A new model is proposed through regression analysis of the database. The proposed model was found to be in good agreement with the test results in the database. Finally, based on the results conclusions were drawn.


2009 ◽  
Vol 46 (8) ◽  
pp. 969-975 ◽  
Author(s):  
Guoxiong Mei ◽  
Qiming Chen ◽  
Linhui Song

A model for predicting displacement-dependent lateral earth pressure was proposed based on an earth pressure – displacement relationship commonly observed in practice. The proposed model is a monotonically increasing and bounded function, with an inflection point at the displacement of s = 0 at which the earth pressure changes from the intermediate active state (the state between active and at-rest) to the intermediate passive state (the state between at-rest and passive). The proposed model can predict the relationship between earth pressure and retaining structure movement for any condition intermediate to the active and passive states, which was verified by the experimental data reported in published literature. The predicted lateral earth pressure coefficients are in good agreement with the test results of model tests reported in the literature.


2017 ◽  
Vol 737 ◽  
pp. 454-458 ◽  
Author(s):  
Seong Cheol Lee ◽  
Kyung Joon Shin ◽  
Jae Min Kim ◽  
Hwan Woo Lee

In this paper, possibility to detect damage on post-tensioned concrete girders was investigated through an experimental program with 6 m long specimens containing smart tendons where FBG (Fiber Bragg Grating) sensors were embedded. Total six specimens were fabricated and tested, and test variables were prestressing tendon’s profile and web thickness. All the specimens were subjected to 3-points loading, and they exhibited shear failure. Through the test, it was observed that tendon strains were successfully measured through FBG sensors regardless of the test variables. It was also observed that tendon strains within the pure span significantly increased while ones nearby the anchors beyond the pure span were constant. When the specimen was cracked, FBG sensors nearby cracks showed relatively drastic increase on tendon strain. Since strain variation along tendons cannot be detected by conventional equipment such as a load-cell, the test results indicated that actual tendon strains can be easily measured with FBG sensors. These results showed that FBG sensors can be useful to check whether prestressed concrete members were significantly damaged. In addition, it is expected that FBG sensors can be helpful on more reasonable maintenance of PSC girders.


2001 ◽  
Vol 28 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Yi Liu ◽  
J L Dawe

An experimental program consisting of 36 reinforced concrete masonry wall specimens comprised of 400 × 200 × 150 mm standard units in two series of tests was carried out to investigate the behaviour of masonry walls under combined axial and lateral loading. W2R series specimens had a single layer of vertical steel, and W4R series specimens had a double layer of vertical steel. Test results show that the effective wall stiffness, (EI)eff, differs from currently specified code values in regions where compression failure tends to predominate. Overall test results presented graphically in the form of lateral load versus deflection, axial load versus moment, and (EI)eff versus eccentricity ratio, e/t, indicate that the current Canadian masonry design code underestimates the effective stiffness of walls with eccentricity ratios e/t < 0.4.Key words: beam–column, masonry, reinforcement, experimental, rigidity, moment magnifier.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Halil Ibrahim Kurt ◽  
Murat Oduncuoglu

The effects of temperature, time, and the additions of magnesium and copper on the wetting behavior of Al/TiC are studied theoretically. Mathematical formula is presented in explicit form. The effect of each variable is investigated by using the obtained equation. It is observed that the time and temperature have a stronger effect on the wetting of TiC in comparison to other input parameters. The proposed model shows good agreement with test results and can be used to find the wetting behavior of Al/TiC. The findings led to a new insight of the wetting process of TiC.


1988 ◽  
Vol 110 (1) ◽  
pp. 12-18 ◽  
Author(s):  
R. H. Knapp ◽  
E. Y. C. Chiu

A fatigue model which predicts cycles-to-failure for helically armored cables subjected to fluctuating axial tension is proposed. Electrical-optical communication cables, power cables, and bridge and track strands normally derive structural strength from two or more layers of round steel wires contrahelically laid around a cylindrical core. In cases where wires are laid in direct contact with wires in adjacent layers, Hertz contact stresses produce wire failures leading to ultimate cable failure at tensions well below the static breaking strength. The proposed model treats cross-wire Hertz contact stresses as equivalent geometric notches in conjunction with the numerical solution of the governing helical wire cable equations. Model and physical test results show good agreement.


2019 ◽  
Vol 11 (18) ◽  
pp. 4866 ◽  
Author(s):  
Dong ◽  
Sui ◽  
Jiang ◽  
Zhou

Due to the poor seismic performance, strengthening of masonry structures is always a significant problem worthy to study. It has been proven that the bearing capacity of existing masonry buildings can be enhanced greatly with efficient strengthening measures. An experimental program was conducted to investigate seismic performance of un-reinforced masonry (URM) walls strengthened b,y reinforced mortar (RM) cross strips. Eleven walls were tested under horizontal low-cyclic load, simultaneously with a vertical constant load on the top face. Three URM walls were tested as reference. The other eight walls were externally strengthened with 40 and 60 mm thick of RM cross strips on one or both faces. Test results showed that externally strengthening with RM cross strips was an efficient way to enhance the seismic performance of URM walls. The failure modes were divided into shear failure and shear-compression failure. All the tested walls did not collapse until the test ended, while many diagonal cracks and few vertical cracks appeared on mortar strips. After strengthening, the shear capacity of the strengthened walls increased by at least 38.2%, and the reinforcement ratio was noted to be the key factor to influence the shear capacity with positive correlation. Besides, RM cross strips did improve deformation capacity greatly.


2015 ◽  
Vol 52 (8) ◽  
pp. 1035-1044 ◽  
Author(s):  
Apichat Suddeepong ◽  
Jinchun Chai ◽  
Shuilong Shen ◽  
John Carter

The deformation of clayey soil under repeated cycles of unloading and reloading has been investigated in oedometer tests using both undisturbed and reconstituted Ariake clay samples. The test results indicate that even for repeated unloading–reloading in the overconsolidated stress range, the deformation of the soil sample is not purely elastic and there is an accumulation of permanent deformation. Based on the test results, a model has been proposed for predicting unloading–reloading-induced deformation. The proposed model has been used to simulate the behaviour of a clayey soil deposit in the Saga Plain, Japan, in response to groundwater fluctuation. Good agreement between the simulation and the field measurements indicates that the proposed model can be used to predict land subsidence induced by groundwater fluctuations.


Sign in / Sign up

Export Citation Format

Share Document