scholarly journals Describing a Set of Points with Elliptical Areas: Mathematical Description and Verification on Operational Tests of Technical Devices

2022 ◽  
Vol 12 (1) ◽  
pp. 445
Author(s):  
Bartosz Wieczorek ◽  
Mateusz Kukla ◽  
Łukasz Warguła

The purpose of this article was to present an algorithm for creating an ellipse for any data set represented on a two-dimensional reference frame. The study objective was to verify the developed method on real results of experimental tests with different subject matter. This article contains a mathematical algorithm to describe a set of points with elliptical areas. In addition, four results of tests with different subject matter are cited, based on which the developed method was verified. The verification of the method included checking the deviation of the geometric dimensions of the ellipse, the number of points contained within the ellipse, and the area of the ellipse. The implemented research methodology allowed to demonstrate the possibility of using the method of describing a set of points with elliptical areas, in order to determine quantitative parameters evaluating the results of the test. The presented results show the method’s applicability for the results obtained in four different operational tests: measurement of the human body’s gravity center position for a person propelling a wheelchair, measurement of marker position using motion capture methods, measurement of particulate emissions when using equipment powered by an internal combustion engine, and measurement of the muscle activity of the upper limb when propelling a hybrid manual-electric wheelchair. The performed experiments demonstrated that the method allows to describe about 85% of all measurement points with an ellipse.

2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


Author(s):  
Jacek Caban ◽  
Grzegorz Litak ◽  
Bartłomiej Ambrożkiewicz ◽  
Leszek Gardyński ◽  
Paweł Stączek ◽  
...  

The automotive industry faces huge challenge in environmental protection by reducing fossil fuels and energy consumption by developing various practical solutions in energy harvesting. The current analysis is related to the diesel engine power supply system in a passenger off-road vehicle for application of the piezoelectric energy harvesting system. Experimental tests were carried out for the three constant rotational speed values - 800, 1000 and 1500 rpm. The results pertained to operational and simulation tests of available power supply options from the engine suspension system in the vehicle, e.g. to power sensors supervising the engine’s operation or other small electrical devices in the vehicle. The simulations of output voltage were conducted by means of a nonlinear model with a resonator coupled to a piezoelectric elastic beam deformed in the magnetic field to improve the band of frequency transducing kinetic mechanic energy into electric energy.


2008 ◽  
Vol 8 (2) ◽  
pp. 6653-6681 ◽  
Author(s):  
A. Konare ◽  
C. Liousse ◽  
B. Guillaume ◽  
F. Solmon ◽  
P. Assamoi ◽  
...  

Abstract. Africa, as a major aerosol source in the world, plays a key role in regional and global geochemical cycles and climate change. Combustion carbonaceous particles, central in this context through their radiative and hygroscopic properties, require ad hoc emission inventories. These inventories must incorporate fossil fuels FF (industries, traffic,...), biofuels BF (charcoal, wood burning,... quite common in Africa for domestic use), and biomass burning BB regularly occurring over vast areas all over the African continent. This latter, subject to rapid massive demographic, migratory, industrial and socio-economic changes, requires continuous emission inventories updating, so as to keep pace with this evolution. Two such different inventories, L96 and L06 with main focus on BB emissions, have been implemented for comparison within the regional climate model RegCM3 endowed with a specialized carbonaceous aerosol module. Resulting modeled black carbon BC and organic carbon OC fields have been compared to past and present composite data set available in Africa. This data set includes measurements from intensive field campaigns (EXPRESSO 1996, SAFARI 2000), from the IDAF/DEBITS surface network and from MODIS, focused on selected west, central and southern African sub-domains. This composite approach has been adopted to take advantage of possible combinations between satellite high-resolution coverage of Africa, regional modeling, use of an established surface network, together with the patchy detailed knowledge issued from past short intensive regional field experiments. Stemming from these particular comparisons, one prominent conclusion is the need for continuous detailed time and spatial updating of combustion emission inventories apt to reflect the rapid transformations of the African continent.


Author(s):  
Pavana Sirimamilla ◽  
Ahmet Erdemir ◽  
Antonie J. van den Bogert ◽  
Jason P. Halloran

Experimental testing of cadaver specimens is a useful means to quantify structural and material response of tissue and passive joint properties against applied loading[1,4]. Very often, specific material response (i.e., stress-strain behavior of a ligament or plantar tissue) has been the goal of experimental testing and is accomplished with uniaxial and/or biaxial tests of prepared tissue specimens with uniform geometries[2,5]. Material properties can then be calculated directly and if testing data involves individual sets of multiple loading modes (e.g. compression only, shear only, volumetric) an accurate representation of the global response of the specimen may be possible. In foot biomechanics, however, it is practically impossible to perform isolated mechanical testing in this manner. The structural response, therefore the stiffness characteristics, of the foot have been quantified, usually using a dominant loading mode: e.g., whole foot compression [6], heel pad indentation [3]. This approach ignores the complexity of most in vivo loading conditions, in which whole foot deformation involves interactions between compression, shear (e.g. heel pad) and tension (e.g. ligaments). Therefore, the purpose of this study was to quantify the mechanical response of a cadaver foot specimen subjected to compression and anterior-posterior (AP) shear loading of isolated heel and forefoot regions as well as whole foot compression. Results from the experimental tests represent a novel methodology to quantify a complete structural biomechanical response. Combined with medical imaging, followed by inverse finite element (FE) analysis, the data may also serve for material characterization of foot tissue.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Martin J. Bergman ◽  
William Reiss ◽  
Carol Chung ◽  
Pamela Wong ◽  
Adam Turpcu

Background. Understanding how disease-assessment indices perform in rheumatoid arthritis (RA) clinical trials can inform their use in routine practice. The study objective was to assess the capacity of combinations of RA Core Data Set measures to distinguish rituximab from control treatment.Methods. Post hoc analysis of two randomised clinical trials was used. Composite Efficacy Indices were derived by combining three or four RA Core Data Set measures from three possible sources: physician, patient, and laboratory.Results. All 105 Composite Efficacy Indices evaluated significantly distinguished rituximab from control treatment (P<10−7). Generally, indices containing measures from three different sources had a greater capacity to distinguish rituximab from control treatment than indices containing three measures from one source. Composite Efficacy Indices performed as well as validated indices such as DAS28, RAPID3, and CDAI.Conclusions. All indices composed of three or four RA Core Data Set measures have a similar capacity to detect treatment differences. These results suggest that the precise measurement used is less important than whether any measurement is performed, although selection should be consistent for each patient. Therefore, the choice of assessment tool should not be limited to a prescribed list and should instead be left to the clinician’s discretion.


2014 ◽  
Vol 14 (10) ◽  
pp. 4895-4907 ◽  
Author(s):  
A. Bigi ◽  
G. Ghermandi

Abstract. The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a data set of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long-term trend in deseasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to a few percent per year, by a generalized least squares and Theil–Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal–Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. Finally, the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop was low and restricted to a few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the observed drop in atmospheric PM10, or if the low drop in particulate emissions is indeed due to the uncertainty in the emission inventory data for this species.


2013 ◽  
Vol 38 (01) ◽  
pp. 55-71 ◽  
Author(s):  
Banks Miller ◽  
Brett Curry

What role does judicial subject matter expertise play in the review of agency decisions? Using a data set of decisions in which the Board of Patent Appeals and Interferences (BPAI) is reviewed by the Court of Appeals for the Federal Circuit, we investigate this question and find that greater subject matter expertise does make it more likely that a judge will vote to reverse an agency decision.


2008 ◽  
Vol 132 (1) ◽  
pp. 25-31
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Stanisław WALUSIAK ◽  
Wiktor PIETRZYK

The purpose of the study is to carry out the experimental tests for the propulsion unit of the selected passenger car i.e. Skoda Felicia 1.3 MPI provided with Simos 2P system (manufactured by Siemens). The tests were carried out by means of an appropriate measuring equipment, among others AOC1K oscilloscope (digital recorder integrated with PC by means of RS232 interface) and a personal computer. The measurements of signals on the contacts of the electronic control device encompass the measuring procedures for individual signals, in accordance with the contact symbols: the camshaft position sensor, the engine speed sensor, the lambda probe, the pressure sensor, the throttle position sensor, the idle speed control actuator, the knock sensor. In some cases it is impossible to confirm the standard codes by the execution of diagnostic tests of the modern control system of ZI combustion engine, using the Simos 2P system.


2020 ◽  
Vol 19 (1) ◽  
pp. 105
Author(s):  
C. A. Azevedo ◽  
C. T. Falcón ◽  
D. C. Estumano

In the current world scenario, there has been noted an increase of researches on biofuel production, more specifically bioethanol, produced from biomass, in order to obtain more information to analyze, understand and optimize this fermentative process. The modelling process, which include the determination of a kinetic model and its respective parameters, is a fundamental step in defining operating strategies and understand how the experimental conditions can affect the optimal system operating conditions. The present work employs a bayesian technique to estimate the parameters of a classical kinectic model used by Silva and collaborators (2016), because, unlike the classical techniques, it is possible to take into account the uncertainty of the measurements and the prior knowledge of the parameters can be accounted for in probabilistic terms. In this context, by using simulated measurements, for the parameters estimation it is propose a sensitivity analysis of the parameters model to define the most relevant ones to be estimate and the use of the Monte Carlo Markov Chain method through the Metropolis-Hastings algorithm, evaluating the influence of four types of priori probability distribution of data set: uniform, gaussian, log-normal and Rayleigh. The obtained results showed that the sensibility analysis is an important step on parameter estimation and algorithm used was satisfactory in estimating the parameters of the kinectic model used, demonstrating the possibility of using it as a tool for time and cost reduction in experimental tests.


Sign in / Sign up

Export Citation Format

Share Document