scholarly journals Innovative Educational Program for Biogas Production Carried Out at University of Hradec Králové (CZ) and at University of Opole (PL)

2016 ◽  
Vol 21 (1-2) ◽  
pp. 61-74 ◽  
Author(s):  
Jan Loskot ◽  
Marek Smolík ◽  
Lidmila Hyšplerová ◽  
Karol Radocha ◽  
Jan Kříž ◽  
...  

AbstractRecently, there is a growing pressure on a rapid construction of agricultural biogas plants, particularly in the Czech-Polish border region. It is an area with large expanses of agricultural land which can serve to supply biogas plants with biomass. This strategy should contribute to harmonize the common agricultural policy of the European Union. A need for qualified operators of these stations on this territory is also increasing. Therefore we first include a demonstration of an education program for students in the field of agricultural waste anaerobic fermentation and biogas production. We present here the first part of an innovative approach which we use in the teaching program “Physico-technical Measurements and Computer Technology” at the Faculty of Science at the University of Hradec Kralove and also in the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. There are requirements to fulfil labour market expectations and to make this subject more attractive for the students. Students’ theoretical and practical preparation constitutes a comprehensive source of knowledge and skills required in a real life job. Joined theoretical and practical knowledge gained by students, reinforced by the skills developed during task analysis followed by their solution, provides the future graduate higher quality abilities and better position in the labour market.

2017 ◽  
Vol 22 (1-2) ◽  
pp. 135-150
Author(s):  
Jan Loskot

Abstract In recent years, the European Union is putting a growing emphasis on constructing agricultural biogas plants, especially in the Czech-Polish border region. In this region, there are large areas of agricultural land which can provide biomass as a substrate used in biogas plants. Biogas plants connected to cogeneration units are a useful renewable source of thermal and electrical energy, but they can cause also some problems. Probably the most serious issue is that inadequately technologically operated biogas plants are the source of unpleasant odour which may affect the surrounding population. Therefore, we prepared a continuation of our educational course focused on biogas plants intended for a study program “Physico-technical Measurements and Computer Technology” at the Faculty of Science at the University of Hradec Kralove and for the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. In this part of the course, the students will learn about the problems with odour released from inadequately technologically operated biogas plants and about the ways how to measure and model the odour contamination in the vicinity of the odour source. An important part of this educational course is a practical exercise on the mathematical modelling of odour contamination from an inadequately technologically operated agricultural biogas plant. Thus, the students will be able to perform the odour modelling using the SYMOS’97 methodology which is approved and used as an official tool for air pollution modelling in the Czech Republic. Students will learn that a biogas plant which is well-operated and correctly located in relation to local hydrometeorological conditions does not annoy local residents by odour.


2021 ◽  
Author(s):  
Janis Millers ◽  
◽  
Irina Pilvere ◽  

With the adoption of the Green Deal in the European Union (EU), the role of biodiversity, basic principles of the circular economy, climate change mitigation, forest protection and renewable energy increased. Since 2007, biogas production in Latvia has increased significantly, as it was possible to receive co-funding from the EU Funds for the construction of biogas plants. In 2021, inputs of agricultural origin are used by 40 biogas plants with an average installed capacity of 1 MW. The emergence of biogas plants on livestock farms is facilitated by the development of a circular economy producing waste from the production process – manure and feed waste. Anaerobic fermentation results in digestate – a nutrient-rich plant fertilizer that reduces the application of chemical fertilizers. Rational use of biogas can reduce the need for fossil fuels. Energy production from biogas should be encouraged, as waste is used efficiently, thereby generating energy and reducing the release of greenhouse gases into the atmosphere. In Latvia, livestock production is one of the key industries of the national economy, which produces manure and feed waste. The present research calculated the amounts of cattle, pig and poultry manure and feed waste in Latvia. The research analysed livestock farms by number of cattle, pigs and poultry, the potential amounts of manure and waste produced and theoretical biogas output. Theoretically, 309 farms analysed can produce 93.5 mln. m3 of biogas from agricultural waste and construct 269 new biogas plants. A policy for supporting the construction of new biogas plants would contribute to the country’s independence from fossil energy sources, as well as increase the proportion of renewable energy sources to 50-70 % in final energy consumption by 2030. Farmers on whose farms a biogas plant could be built need to carefully consider the uses of the biogas produced. The uses could be thermal energy generation for heat supply, cogeneration (thermal and electrical energy) or biomethane production.


2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


2019 ◽  
Vol 11 (22) ◽  
pp. 6515 ◽  
Author(s):  
Katarzyna Anna Koryś ◽  
Agnieszka Ewa Latawiec ◽  
Katarzyna Grotkiewicz ◽  
Maciej Kuboń

Adequate management of biomass residues generated by agricultural and food industry can reduce their negative impacts on the environment. The alternative use for agricultural waste is production of biogas. Biomass feedstock intended as a substrate for the agricultural biogas plants may include energy crops, bio-waste, products of animal and plant origin and organic residues from food production. This study reviews the potential of selected biomass residues from the agri-food industry in terms of use for agricultural biogas production in Poland. The most common agri-food residues used as substrates for biogas plants in Poland are maize silage, slurry, and distillery waste. It is important that the input for the agricultural biogas installations can be based on local wastes and co-products that require appropriate disposal or storage conditions and might be burdensome for the environment. The study also discusses several limitations that might have an unfavourable impact regarding biogas plants development in Poland. Given the estimated biomass potential, the assumptions defining the scope of use of agricultural biogas and the undeniable benefits provided by biogas production, agricultural biogas plants should be considered as a promising branch of sustainable electricity and thermal energy production in Poland, especially in rural areas.


2020 ◽  
Author(s):  
Xueqing Yang ◽  
Yang Liu ◽  
Daniela Thrän ◽  
Alberto Bezama ◽  
Mei Wang

Abstract Background: The German energy transition strategy calls for a reform of the German energy sector. As a result, the Germany Renewable Energy Sources Act (EEG) was passed in 2000 and is widely regarded as successful legislation for promoting bioenergy development. More than 1,000 biogas plants were constructed in Central Germany (CG) between 2000 and 2014. Despite this, few studies have been conducted for this period that systematically investigate how environmental, social and economic factors, as well as various EEG amendments have impacted biogas production and what the environmental consequence of biogas production development in CG have been. Methods: The impacts of environmental, social and economic factors and different EEG amendments on biogas production decisions in CG were quantified using multivariate linear regression model and the event study econometric technique. A GIS-based spatial analysis was also conducted to provide insight into the changes to agricultural land use that resulted from the development of biogas plants during the EEG period. Results: The main finding was that the income diversification effect resulting from biogas production was the most important factor in a farmer’s decision to adopt biogas production. In addition, all of the EEG amendments had a significant influence on the adoption of biogas production, however EEG III and IV, which tried to promote small-scale plants, were unable to reduce the average size of the plants constructed in these two amendment periods. From a landscape perspective, there was a striking increase in the cultivation of silage maize in CG from 2000 to 2014. Silage maize was intensively cultivated in regions with a high installed biogas plant capacity. Since the first EEG amendment, permanent grassland area slightly increased while arable land area declined in CG. Conclusions: The adoption of biogas production in CG was strongly driven by economic incentives for the farmers, more precisely, by the incentive to diversify their income sources. In addition to increase the subsidy, future EEG amendments should find new measures to encourage the adoption of small-scale biogas plants, which had been unsuccessful in EEG amendments III and IV.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2668 ◽  
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Grzegorz Mentel ◽  
Tadeusz Olejarz

Ukraine has enough biomass resources for biogas production. However, this energy potential is not used sufficiently. This research is aimed at examining the current experience of commercial biogas systems in the Europe Union and its adaptation for Ukraine. Special attention was paid to economic indicators, such as specific investment costs, production costs (biogas, biomethane, and electricity), and incentives. Using statistical data for the European Union and Ukraine, the biogas potential for Ukraine (based on European experience) was determined. The economic competitiveness of biogas production was evaluated compared to alternatives, such as photovoltaic, wind power, biomass, conventional fuels, and liquid biofuels. The results showed that biogas complexes have higher specific investment costs and produce more expensive electricity. It was highlighted that agricultural residues and industrial waste are sustainable feedstocks for biogas systems. A perspective biogas plant is a plant that is an integrated part of the circular bioeconomy that is based on organic residues. Biomethane production (as a substitution for vehicle fuel) combined with capture and utilization of carbon dioxide is a more profitable pathway. Awareness and perception of the importance of biogas are key factors for the development of the biogas industry. To develop an effective strategy for the biogas industry, it is necessary to create a positive image in order to raise awareness and knowledge of biogas technologies.


2015 ◽  
Vol 31 (4) ◽  
pp. 330-349
Author(s):  
Ane Katharina Paarup Meyer ◽  
Caroline Schleier ◽  
Hans-Peter Piorr ◽  
Jens Bo Holm-Nielsen

AbstractThis paper presents an assessment of the surplus grass production in the Region of Southern Denmark, and the perspectives of utilizing it in local biogas production. Grass production represents a significant role in the Danish agricultural sector. However, statistical data show an excess production of averagely 12% in the period 2006–2012. Based on spatial analyses and statistical data, the geographical distribution of grass production and consumption was estimated and mapped for the Region of Southern Denmark. An excess production of grass was estimated for several of the municipalities in the Region of Southern Denmark, but the excess production was found to be quite sensitive to the management practice of the grass fields and the productivity of the grass. The yields of excess grass estimated in the sensitive and conservative scenario were found to be sufficient to serve a sole co-substrate in 2–8 biogas plants using animal manure as primary feedstock. The yields in the intensive scenario were assessed to be sufficient to serve a sole co-substrate in 8–16 biogas plants. Alternatively, at least 31% of the regionally produced maize which is exported to the biogas sector could annually be substituted by methane produced from the production of excess grass. The intensive scenario was estimated to have significantly higher grass yields than the sensitive and conservative scenario. The environmental impacts of intensified agricultural management should, however, be assessed carefully in order to ensure that the ecosystems are not increasingly being burdened. The potential of utilizing residual grass for energy production in the region or as an alternative to the maize exported to Northern Germany, was concluded to seem as a promising possibility for a sustainable development of the regional biogas sector. Furthermore, it could provide incentives for establishing new biogas plants in the region and thereby increase the share of manure being digested anaerobically, which could help extrapolate the environmental and climate related benefits documented for the use of digested animal manure as fertilizer on agricultural land.


Author(s):  
Anita Zapalowska ◽  
Ulyana Bashutska

In addition to hydroelectric power plants, solar and wind power plants, biogas plants are important in the production of electricity and heat from renewable energy sources. It is known that depending on the type of substrate used for processing and the design features of biogas plants, they have their own advantages and disadvantages. Nevertheless, properly localized biomass installation is able to decrease the use of conventional materials reducing greenhouse gas emissions. Bio-waste, plant residues and other by-products can be used to produce electricity, heat and purified methane as fuel for repaired vehicles. Biogas production is a key technology for the sustainable use of agricultural biomass as a renewable energy source. Both, Poland and Ukraine, have a large agricultural area, and well developed animal cattery, which creates opportunities for alternative energy sources from biomass development.          Agricultural biogas plant energy produced from waste such manure, slurry and another agricultural waste, is an excellent source of heat, likewise, electricity. Therefore the importance of using agricultural waste as an energy source in the production of biogas shall be emphasized. A significant drawback of the system is the need to provide low economic and environmental losses. For this purpose, the place of biomass harvesting, transport and its preparation together with storage should be taken into account. To achieve the highest efficiency, small biogas plants should have permanent composition of substrate consisting of various ingredients.                 Ukraine and Poland has considerable potential of renewable energy sources development of which can provide significant economic, ecological, and social benefits. The production of biogas has become an attractive source of extra income for many farmers. Biogas production has a useful effect not only on economic, but ecological development, particularly in the rural regions. At the same time, environmental protection aspects have gained additional importance, so that anaerobic treatment processes have become a key technology for environmental and climate protection.          On the basis of the submitted documentation by the municipal administration and the manufacturer, the operation of biogas plants for the processing of organic agricultural waste in Gorajec and Odrzechowa (Poland) has been presented.


2020 ◽  
pp. 136-148
Author(s):  
M. Spodoba ◽  
◽  
M. Zablodskiy ◽  

To date, biomass fermentation in biogas plants is one of the most advanced, environmentally and economically viable solutions for energy production from waste. However, the process of anaerobic fermentation of waste is long, so one of the main ways to intensify biogas production is mixing and heating of biomass during fermentation. The article is devoted to the question of substantiation of creation of electrothermomechanical system for mixing and heating of biomass in a biogas reactor. The combination of two intensification processes in a combined system pays special attention to the energy efficiency of such a system, so the creation of the system requires in-depth study of heat fluctuations from speed and the presence of a contaminant layer on the heater surface and determine the optimal stirrer speed. The studies were performed for a cylindrical biogas reactor, assuming that the contaminant layer is evenly distributed on the surface of the blades and the shaft in which the electric heaters are installed. When determining the optimal frequency of biomass mixing, the criterion of optimality was taken to be the smallest value of the difference between the heat flux of the contaminated and uncontaminated surface of the heater. During the study it was found that at speed , the difference between the heat flux of the contaminated surface and uncontaminated is 40 %. At speed , the difference between the values is 26%. According to the selected optimality criterion, the optimal speed of the electrothermomechanical system taking into account the contaminant layer is in the range . The increase in heat flux from the stirring frequency is non-linear for both contaminated and non-contaminated heaters.


Sign in / Sign up

Export Citation Format

Share Document