scholarly journals Rheological Characteristics Evaluation of Bitumen Composites Containing Rock Asphalt and Diatomite

2019 ◽  
Vol 9 (5) ◽  
pp. 1023 ◽  
Author(s):  
Wentong Huang ◽  
Duanyi Wang ◽  
Peiyong He ◽  
Xiang Long ◽  
Bing Tong ◽  
...  

Previous studies have showed that rock asphalt (RA) or diatomite were used to modify the petroleum bitumen. This paper presents the findings from a study conducted to evaluate the potential impact of RA and diatomite on the rheological characteristics of bitumen composites. RA and diatomite with three different dosages were added into the petroleum bitumen: 18% RA, 13% RA+7% diatomite, and 16% RA+9% diatomite by weight. The rheological characteristics of the RA and diatomite modified bitumens were evaluated in this study. The tests conducted included temperature sweep and frequency sweep tests with a dynamic shear rheometer (DSR), a Brookfield rotation viscosity test, and a scanning electron microscope test. The research showed that the addition of RA and diatomite to petroleum bitumen considerably increased the apparent viscosity, dynamic shear modulus, and rutting resistance in bitumen specimens. However, the DSR test indicated a slight reduction in the fatigue performance of composites made of RA and diatomite modified bitumens. Overall, RA and diatomite are good modifiers for petroleum bitumen for a performance improvement.

Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
P. Dayanandan ◽  
P. B. Kaufman

A three dimensional appreciation of the guard cell morphology coupled with ultrastjuctural studies should lead to a better understanding of their still obscure dynamics of movement. We have found the SEM of great value not only in studies of the surface details of stomata but also in resolving the structures and relationships that exist between the guard and subsidiary cells. We now report the isolation and SEM studies of guard cells from nine genera of plants.Guard cells were isolated from the following plants: Psilotum nudum, four species of Equisetum, Cycas revoluta, Ceratozamia sp., Pinus sylvestris, Ephedra cochuma, Welwitschia mirabilis, Euphorbia tirucalli and Allium cepa.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Sign in / Sign up

Export Citation Format

Share Document