scholarly journals Anchor Design of a Ring Joint Based on Reliability in a Precast Shear Wall Structure

2019 ◽  
Vol 9 (16) ◽  
pp. 3361 ◽  
Author(s):  
Jian Zhou ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Anliang Jiao ◽  
Hongliang Qian

Precast buildings have been widely used owing to its outstanding features. As these buildings consist of a combination of various components, the mechanical properties of the connections play a critical role in the overall performance of the structure, particularly the vertical connections in shear wall members. A new connection called ring joint is proposed for precast buildings, and test pieces were designed to analyze the anchor performance. The damage phenomena and test data were observed and recorded. The displacement, force, and strain were analyzed, and the results indicated that the anchor length was a key factor and the connection was safe and reliable under reasonable design. Numerical analysis was conducted to explore the mechanical mechanism, and a bearing capacity model was proposed combining the bond and dowel effects simultaneously. Anchor length was determined based on reliability analysis under various conditions, and other suggestions were proposed. All these could guarantee the mechanical properties of the connection, as well as safety and reliability, and promote the popularization and application.

2015 ◽  
Vol 9 (1) ◽  
pp. 799-804
Author(s):  
Sufen Shi

NingBo-Liansheng International Commercial Plaza is a twin towers with high-connection. It is a complex tall building. The frame-shear wall structure system is used. The connection body is in 21 and 22 layers. The connection system is strong connection and the two storey steel trusses are used. The north and South towers are placed by certain angle, and it designed for the adjustment of plane with layout of shear wall near two tower dynamic characteristics. For the complexity of connection system, the performance of different design goals are worked out for connecting different parts of body as well as the tower. According to the calculation results and to take measures to strengthen the connection body, the connection system can achieve the design target. It ensures the safety and reliability of the whole structure.


2014 ◽  
Vol 578-579 ◽  
pp. 417-421
Author(s):  
Wei Jian Zhao ◽  
Ye Nan Guo ◽  
Jia Xin Tong ◽  
Shen Ming Yuan

To study on the property of the column to wall connection in the prefabricated frame-shear wall structure, these four connection ways are introduced in the article, which are U-shaped ,double straight ,chain buckle, double straight vertical U-shaped bar splicing. Using ABAQUS to simulate, comparing results of four connection ways with the cast-in-situ concrete structure. The results show that mechanical properties of four prefabricated structures are similar to the cast-in-situ structure, but the maximum bearing capacities are reduced.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3755
Author(s):  
Štefan Gašpár ◽  
Tomáš Coranič ◽  
Ján Majerník ◽  
Jozef Husár ◽  
Lucia Knapčíková ◽  
...  

The resulting quality of castings indicates the correlation of the design of the mold inlet system and the setting of technological parameters of casting. In this study, the influence of design solutions of the inlet system in a pressure mold on the properties of Al-Si castings was analyzed by computer modelling and subsequently verified experimentally. In the process of computer simulation, the design solutions of the inlet system, the mode of filling the mold depending on the formation of the casting and the homogeneity of the casting represented by the formation of shrinkages were assessed. In the experimental part, homogeneity was monitored by X-ray analysis by evaluating the integrity of the casting and the presence of pores. Mechanical properties such as permanent deformation and surface hardness of castings were determined experimentally, depending on the height of the inlet notch. The height of the inlet notch has been shown to be a key factor, significantly influencing the properties of the die-cast parts and influencing the speed and filling mode of the mold cavity. At the same time, a significant correlation between porosity and mechanical properties of castings is demonstrated. With the increasing share of porosity, the values of permanent deformation of castings increased. It is shown that the surface hardness of castings does not depend on the integrity of the castings but on the degree of subcooling of the melt in contact with the mold and the formation of a fine-grained structure in the peripheral zones of the casting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marianna Caterino ◽  
Monica Gelzo ◽  
Stefano Sol ◽  
Roberta Fedele ◽  
Anna Annunziata ◽  
...  

AbstractIn recent months, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world. COVID-19 patients show mild, moderate or severe symptoms with the latter ones requiring access to specialized intensive care. SARS-CoV-2 infections, pathogenesis and progression have not been clearly elucidated yet, thus forcing the development of many complementary approaches to identify candidate cellular pathways involved in disease progression. Host lipids play a critical role in the virus life, being the double-membrane vesicles a key factor in coronavirus replication. Moreover, lipid biogenesis pathways affect receptor-mediated virus entry at the endosomal cell surface and modulate virus propagation. In this study, targeted lipidomic analysis coupled with proinflammatory cytokines and alarmins measurement were carried out in serum of COVID-19 patients characterized by different severity degree. Serum IL-26, a cytokine involved in IL-17 pathway, TSLP and adiponectin were measured and correlated to lipid COVID-19 patient profiles. These results could be important for the classification of the COVID-19 disease and the identification of therapeutic targets.


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


Sign in / Sign up

Export Citation Format

Share Document