scholarly journals Key Roles of Plasmonics in Wireless THz Nanocommunications—A Survey

2019 ◽  
Vol 9 (24) ◽  
pp. 5488 ◽  
Author(s):  
Efthymios Lallas

Wireless data traffic has experienced an unprecedented boost in past years, and according to data traffic forecasts, within a decade, it is expected to compete sufficiently with wired broadband infrastructure. Therefore, the use of even higher carrier frequency bands in the THz range, via adoption of new technologies to equip future THz band wireless communication systems at the nanoscale is required, in order to accommodate a variety of applications, that would satisfy the ever increasing user demands of higher data rates. Certain wireless applications such as 5G and beyond communications, network on chip system architectures, and nanosensor networks, will no longer satisfy speed and latency demands with existing technologies and system architectures. Apart from conventional CMOS technology, and the already tested, still promising though, photonic technology, other technologies and materials such as plasmonics with graphene respectively, may offer a viable infrastructure solution on existing THz technology challenges. This survey paper is a thorough investigation on the current and beyond state of the art plasmonic system implementation for THz communications, by providing in-depth reference material, highlighting the fundamental aspects of plasmonic technology roles in future THz band wireless communication and THz wireless applications, that will define future demands coping with users’ needs.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3194 ◽  
Author(s):  
Aqeel Naqvi ◽  
Sungjoon Lim

Owing to the rapid growth in wireless data traffic, millimeter-wave (mm-wave) communications have shown tremendous promise and are considered an attractive technique in fifth-generation (5G) wireless communication systems. However, to design robust communication systems, it is important to understand the channel dynamics with respect to space and time at these frequencies. Millimeter-wave signals are highly susceptible to blocking, and they have communication limitations owing to their poor signal attenuation compared with microwave signals. Therefore, by employing highly directional antennas, co-channel interference to or from other systems can be alleviated using line-of-sight (LOS) propagation. Because of the ability to shape, switch, or scan the propagating beam, phased arrays play an important role in advanced wireless communication systems. Beam-switching, beam-scanning, and multibeam arrays can be realized at mm-wave frequencies using analog or digital system architectures. This review article presents state-of-the-art phased arrays for mm-wave mobile terminals (MSs) and base stations (BSs), with an emphasis on beamforming arrays. We also discuss challenges and strategies used to address unfavorable path loss and blockage issues related to mm-wave applications, which sets future directions.


2017 ◽  
Author(s):  
Emmanuel Seaman ◽  
Jason Du

With the ultra-scaling of CMOS technology, high-speed and low-power millimeter-wave communication systems for network-on-chip have been attracting more and more attentions due to the wider bandwidth and higher data rate that can meet the ever-increasing needs for multimedia, massive external data storage, or even biomedical applications. However, from manufacturing’s perspective, the circuits implementations are increasingly susceptible to fabrication process variations with the scaling of CMOS technology, which results in loss of yield rate. To solve this issue, a sensor-fusion solution is proposed in this paper by adding multiple on-chip sensors, including power detectors, temperature sensors, information envelope detectors and related filters, instrumentation amplifiers using a standard CMOS process. These sensors and detectors aim to collect critical system performance and environmental parameters, which will be utilized by a self-healing and optimization algorithm to adjust the state of system components by digitized control knobs.


Author(s):  
Walder Andre ◽  
Olivier Couillard

One of the prerequisites of Electronic Warfare (EW) is to have the means to provide secure point-to-point wireless data and voice communications with other ground stations. New technologies are giving rise to bigger information security threats. This situation illustrates the best the urgency of reducing the development and upgrade time of EW systems. Previous works suggest that digital systems are the best candidates for this purpose and therefore form the backbone of modern Electronic Warfare. Indeed, Digital Modulation (DM) techniques are widely used in modern wireless communication systems. This is largely due to their high resistance to noise and their high transmission capacity that can be achieved through data multiplexing. In this article, a new reconfigurable architecture of a Phase Shift Keying (PSK) modulation is described. The latter can be configured in real time to produce the following modulation schemes: QPSK, 8-PSK, and 16-PSK without having to regenerate the FPGA configuration bits. This action can be done by software via programming or manually using a DIP switch. The proposed design is implemented on the Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board. The Vivado Physical Design Automation tool indicates a power consumption of 303 mW by the on-chip circuit. The experimental results are in agreement with the simulations.


2021 ◽  
Author(s):  
Shrishti Gaur ◽  
Neetu Sood

In the past few decades wireless communication has been growing with leaps and bounds characterised by demand for safer, faster and enhanced communication systems. Exploiting the physical properties of communication through appropriate signalling and coding processes, the concept of Physical Layer Security (PLS) has intensified. Consequently, the pursuit for this fulfilment has led to surfacing of inevitable high data traffic and challenges with data security. For futuristic technologies like 5G and beyond, traditional technologies like Radio Frequency (RF) unaccompanied have proved to be rather inefficient and search for alternative and upgraded technologies like Visible Light Communication (VLC) has gained momentum. However, VLC technology is not sufficient in all terms and in combination with RF demonstrates superior capabilities. In this paper an attempt has been made to evaluate the importance of PLS systems and the depth and degree up to which engineers and researchers have been able to reach in attaining robustness and resilience in it as an integral aspect of RF and VLC systems.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000886-000890
Author(s):  
Bruce C. Kim ◽  
Dae-Hyun Han ◽  
Seok-Ho Noh

This paper presents high frequency measurement techniques of on-chip inductors in giga Hertz range for wireless communication products. The on-chip inductors were fabricated on high resistive substrate to reduce loss. We compared several different on-chip inductors for self-resonance frequency and quality factors. The collection of measurement data could be used for the guideline of designing practical spiral inductors for wireless applications.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4261 ◽  
Author(s):  
Md. Samsuzzaman ◽  
Mohammad Islam

A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22–9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28–4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Paul Unterhuber ◽  
Stephan Pfletschinger ◽  
Stephan Sand ◽  
Mohammad Soliman ◽  
Thomas Jost ◽  
...  

Modern society demands cheap, more efficient, and safer public transport. These enhancements, especially an increase in efficiency and safety, are accompanied by huge amounts of data traffic that need to be handled by wireless communication systems. Hence, wireless communications inside and outside trains are key technologies to achieve these efficiency and safety goals for railway operators in a cost-efficient manner. This paper briefly describes nowadays used wireless technologies in the railway domain and points out possible directions for future wireless systems. Channel measurements and models for wireless propagation are surveyed and their suitability in railway environments is investigated. Identified gaps are pointed out and solutions to fill those gaps for wireless communication links in railway environments are proposed.


2018 ◽  
Vol 96 (1) ◽  
pp. 1-7 ◽  
Author(s):  
L. Pantoli ◽  
V. Stornelli ◽  
G. Leuzzi ◽  
Hongjun Li ◽  
Zhifu Hu

2017 ◽  
Author(s):  
Emmanuel Seaman ◽  
Jason Yuan Du

With the ultra-scaling of CMOS technology, high-speed and low-power millimeter-wave communication systems for network-on-chip have been attracting more and more attentions due to the wider bandwidth and higher data rate that can meet the ever-increasing needs for multimedia, massive external data storage, or even biomedical applications. However, from manufacturing’s perspective, the circuits implementations are increasingly susceptible to fabrication process variations with the scaling of CMOS technology, which results in loss of yield rate. To solve this issue, a sensor-fusion solution is proposed in this paper by adding multiple on-chip sensors, including power detectors, temperature sensors, information envelope detectors and related filters, instrumentation amplifiers using a standard CMOS process. These sensors and detectors aim to collect critical system performance and environmental parameters, which will be utilized by a self-healing and optimization algorithm to adjust the state of system components by digitized control knobs.


2017 ◽  
Author(s):  
Emmanuel Seaman ◽  
Jason Yuan Du

With the ultra-scaling of CMOS technology, high-speed and low-power millimeter-wave communication systems for network-on-chip have been attracting more and more attentions due to the wider bandwidth and higher data rate that can meet the ever-increasing needs for multimedia, massive external data storage, or even biomedical applications. However, from manufacturing’s perspective, the circuits implementations are increasingly susceptible to fabrication process variations with the scaling of CMOS technology, which results in loss of yield rate. To solve this issue, a sensor-fusion solution is proposed in this paper by adding multiple on-chip sensors, including power detectors, temperature sensors, information envelope detectors and related filters, instrumentation amplifiers using a standard CMOS process. These sensors and detectors aim to collect critical system performance and environmental parameters, which will be utilized by a self-healing and optimization algorithm to adjust the state of system components by digitized control knobs.


Sign in / Sign up

Export Citation Format

Share Document