scholarly journals Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland

Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 393 ◽  
Author(s):  
Ewa Adamiec ◽  
Jacek Dajda ◽  
Agnieszka Gruszecka-Kosowska ◽  
Edeltrauda Helios-Rybicka ◽  
Marek Kisiel-Dorohinicki ◽  
...  

The aim of this study was to assess air quality by using medium-cost sensors in recreational areas that are not covered by permanent monitoring. Concentrations of air pollutants PM2.5, PM10, PM1, CO, O 3 , NO 2 in the Niedzica recreational area in southern Poland were obtained. The research revealed that in cold weather, particulate matter concentrations significantly exceeded acceptable levels determined for PM2.5 and PM10. The most important factor that affects air quality within the studied area seems to be the combustion of poor quality fuels for heating purposes. The information obtained by the research presented could be a useful tool for local authorities to make environmental decisions, based on the potential health impacts of poor air quality levels on the population.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 532
Author(s):  
David Olukanni ◽  
David Enetomhe ◽  
Gideon Bamigboye ◽  
Daniel Bassey

Vehicle emissions have become one of the most prevailing air contamination sources, including nitrogen oxides, volatile organic compounds, carbon monoxide and particulate matter (PM). Among other air pollutants, PM limits visible sight distance and poses health risks upon inhalation into the human body. This study focused on assessing PM2.5 concentrations in air at different periods of the day at the highly trafficked grade-separated intersection of Sango-Ota, Ogun State, Nigeria. PM2.5 readings were taken at three at-grade points around the intersection’s roundabout between 10:00 a.m. and 5:00 p.m. for four (4) days using the BR-SMART-126 Portable 4-in-1 air quality monitor. The highest level of PM2.5 obtained on Day 1 (Monday) and Day 4 (Thursday) was about 45.1% and 38.6%, respectively, lower than that of Day 3 (Wednesday). The highest concentrations of PM2.5 were recorded between 11:00 and 13:00 and between 16:00 and 18:00 (up to 217 µg/m3) whereas the lowest levels were recorded between 14:00 and 15:00 (as low as 86 µg/m3). The concentration of PM2.5 at the Sango-Ota intersection is adjudged “very poor” with average hourly concentrations between 97 and 370 µg/m3. Outcomes obtained indicate the need for improved measures to control air quality along major road corridors and at intersections in Ogun State and Nigeria at large.


2020 ◽  
Vol 9 (10) ◽  
pp. e8849109317
Author(s):  
Otto Gabriel Fernandes de Oliveira Cavalcante ◽  
Janks Karbdalla Leal de Paiva ◽  
André Haubrichs de Freitas e Silva ◽  
Brenda dos Santos Costa ◽  
Pedro Marques Miguel da Costa ◽  
...  

Many debates about environmental issues surfaced with the advent of the new coronavirus and social distancing. Therefore, the present article aimed to investigate air quality impacts in Rio de Janeiro, during social isolation period. In order to confirm air pollutants, decrease, for example NO and particulate material, documents such as legislations, technical standards, scientific articles published in this period, were analyzed during the studied period. Furthermore, the article sought to bring awareness about the short temporality of the air quality improvement, since without more sustainable forms of production, in a little while, those pollutants may increase again.


2021 ◽  
Vol 4 (Vol4) ◽  
pp. 14-23
Author(s):  
Kamel Al-Zboon

This study aimed to determine the cement industry's impact on ambient air quality inside and around a Saudi Arabian cement plant. Air quality has assessed in terms of several indicators: carbon dioxide, carbon monoxide, nitrogen dioxide, sulfur dioxide, PM10, PM2.5, ozone, and volatile organic compounds. AERMOD model was used to predict the concentrations of pollutants in the surrounding area. Results obtained revealed that the concentration of all impurities is within the standard limits for ambient air quality. In comparison with OSHA guidelines, only PM10 concentration exceeded the allowable limit. The higher concentrations of pollutants are recorded at the site closest to the plant site (S1, a housing compound located 0.8km ESE from the plant). Concentrations at the other monitoring sites decreased significantly. Except for PM10, the calculated hazard quotient (HQ) of all pollutants was <1which indicated no health effects are expected. The HQ of emissions can be ranked as: PM10> PM2.5>CO2>O3>CO>VOCs>NOx>SO2>H2S. The hazardous index (HI) was: 3.59, 2.76, 2.18, and 2.67 for S1, S2 (located 17km NNE), S3 (located 10.6km SE), and S4 (located 6.4km SSW), respectively. The affected organs can be ranked based on health risk calculation as respiratory system>cardiovascular system>Eye irritation>Allergy infection>Nervous system>Development>Hematology >Alimentary endocrine. The cancer risk factor was shallow and ranged from 4.04x10-6 for S4 to 1.88x10-5 for S1, which indicated a very low-risk potential. In terms of emissions concentrations, AERMOD predicted higher concentrations than the actual monitoring data for all measured parameters.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1504
Author(s):  
Chunsheng Fang ◽  
Xiaodong Tan ◽  
Yue Zhong ◽  
Ju Wang

Sichuan Basin is one of the most densely populated areas in China and the world. Human activities have great impact on the air quality. In order to understand the characteristics of overall air pollutants in Sichuan Basin in recent years, we analyzed the concentrations of six air pollutants monitored in 22 cities during the period from January 2015 to December 2020. During the study period, the annual average concentrations of CO, NO2, SO2, PM2.5 and PM10 all showed a clear downward trend, while the ozone concentration was slowly increasing. The spatial patterns of CO and SO2 were similar. High-concentration areas were mainly located in the western plateau of Sichuan Basin, while the concentrations of NO2 and particulate matter were more prominent in the urban agglomerations inside the basin. During the study period, changes of the monthly average concentrations for pollutants (except for O3) conformed to the U-shaped pattern, with the highest in winter and the lowest in summer. In the southern cities of the basin, secondary sources had a higher contribution to the generation of fine particulate matter, while in large cities inside the basin, such as Chengdu and Chongqing, air pollution had a strong correlation with automobile exhaust emissions. The heavy pollution incidents observed in the winter of 2017 were mainly caused by the surrounding plateau terrain with typical stagnant weather conditions. This finding was also supported by the backward trajectory analysis, which showed that the air masses arrived in Chengdu were mainly from the western plateau area of the basin. The results of this study will provide a basis for the government to take measures to improve the air quality in Sichuan Basin.


Author(s):  
Ewa Brągoszewska ◽  
Izabela Biedroń

The aims of this article are to characterize: the quantity of culturable bacterial aerosol (QCBA) and the quality of culturable bacterial aerosol (QlCBA) in an office building in Southern Poland during the spring. The average concentration of culturable bacterial aerosol (CCBA) in this building ranged from 424 CFU m−3 to 821 CFU m−3, below Polish proposals for threshold limit values. Size distributions were unimodal, with a peak of particle bacterial aerodynamic diameters less than 3.3 μm, increasing potentially adverse health effects due to their inhalation. The spring office exposure dose (SPED) of bacterial aerosol was estimated. The highest value of SPED was in April (218 CFU kg−1), whereas the lowest was in June (113 CFU kg−1). Analysis was undertaken to determine the antibiotic resistance of isolated strains and their ability to form biofilms, which may facilitate the spread of antibiotic resistance genes. In the course of the study, it was found that Staphylococcus xylosus had the greatest ability to form biofilms, while the strains with the highest antibiotic resistance were Micrococcus luteus D and Macrococcus equipercicus. Given that mainly antibiotic-sensitive bacteria from bioaerosol were isolated, which transfers resistance genes to their plasmids, this shows the need for increased monitoring of indoor air quality in workplaces.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
David A. Wood

Medium-term air quality assessment, benchmarking it to recent past data can usefully complement short-term air quality index data for monitoring purposes. By using daily and monthly averaged data, medium-term air quality benchmarking provides a distinctive perspective with which to monitor air quality for sustainability planning and ecosystem perspectives. By normalizing the data for individual air pollutants to a standard scale they can be more easily integrated to generate a daily combined local area benchmark (CLAB). The objectives of the study are to demonstrate that medium-term air quality benchmarking can be tailored to reflect local conditions by selecting the most relevant pollutants to incorporate in the CLAB indicator. Such a benchmark can provide an overall air quality assessment for areas of interest. A case study is presented for Dallas County (U.S.A.) applying the proposed method by benchmarking 2020 data for air pollutants to their trends established for 2015 to 2019. Six air pollutants considered are: ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, benzene and particulate matter less than 2.5 micrometres. These pollutants are assessed individually and in terms of CLAB, and their 2020 variations for Dallas County compared to daily trends established for years 2015 to 2019. Reductions in benzene and carbon monoxide during much of 2020 are clearly discernible compared to preceding years. The CLAB indicator shows clear seasonal trends for air quality for 2015 to 2019 with high pollution in winter and spring compared to other seasons that is strongly influenced by climatic variations with some anthropogenic inputs. Conducting CLAB analysis on an ongoing basis, using a relevant nearpast time interval for benchmarking that covers several years, can reveal useful monthly, seasonal and annual trends in overall air quality. This type of medium-term, benchmarked air quality data analysis is well suited for ecosystem monitoring.


2021 ◽  
Vol 18 (4) ◽  
pp. 63-71
Author(s):  
Kavitha Chandu ◽  
Dharma Raju Akasapu ◽  
Samudrala Venkata Jagannadha Kumar ◽  
Madhavaprasad Dasari

The study focusses on the variation of air quality assessed from mass concentrations of air pollutants in the year 2020 (particulate matter (PM2.5 and PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3)) amidst COVID–19 restrictions on firework activity during Diwali festive period in Visakhapatnam city. The results are compared with 2018 and 2019. The results indicate that the firework activity affected ambient air quality. The effect is lower in 2020 than in 2018 and even in 2019. In 2019, the effect is lower compared to 2018 due to the washout of pollutants caused by unusual rains on those days.


2011 ◽  
Vol 6 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Jarmila Rimbalová ◽  
Silvia Vilčeková ◽  
Adriana Eštoková

Sign in / Sign up

Export Citation Format

Share Document