scholarly journals Influence of Krakow Winter and Summer Dusts on the Redox Cycling of Vitamin B12a in the Presence of Ascorbic Acid

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1050
Author(s):  
Justyna Polaczek ◽  
Angelika Jodłowska ◽  
Grażyna Stochel ◽  
Rudi van Eldik

Air pollution remains a serious problem in Krakow, Poland. According to the European Environmental Agency, annual mean levels of both PM2.5 and PM10 recorded in Krakow are much higher than EU limit values. Thus, the influence of particulate matter (PM) on the function of living organisms, as well as different physiological processes, is an urgent subject to be studied. The reported research forms part of the multi-disciplinary project ‘Air Pollution versus Autoimmunity: Role of multiphase aqueous Inorganic Chemistry,’ which aims to demonstrate the PM effect on the immune system. The present studies focused on the role of dust collected in Krakow on the redox cycling of vitamin B12a in the presence of ascorbic acid. Dust samples collected during the winter 2019/2020 and summer 2020 months in the city center of Krakow were characterized using various analytical techniques. The influence of Krakow dusts on the kinetics of the reaction between nitrocobalamin and ascorbic acid was confirmed and discussed in terms of the composition of the samples. Possible reasons for the reported findings are provided.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Sinkovic ◽  
M Krasevec ◽  
D Suran ◽  
M Marinsek ◽  
A Markota

Abstract Introduction Air pollution, in particular exposure to particulate matter fine particles of less than 2.5 microns in diameter (PM2.5), increases the risk of cardiovascular events. Short-term exposure (hours to few days prior) to increased PM2.5 levels even may help trigger ST-elevation myocardial infarction (STEMI) and heart failure exacerbation in susceptible individuals. The risk of vascular events is increased even in exposures below the current European air quality limit values (mean annual levels for PM2.5 less than 10μg/m3, 24-hour mean level less than 25μg/m3). Purpose To evaluate predictive role of PM2.5 levels ≥20 μg/m3 one day prior to hospital admission for the risk of admission acute heart failure (AAHF) in STEMI patients. Methods In 290 STEMI patients (100 women, 190 men, mean age 65.5±12.9 years), treated by primary percutaneous coronary intervention (PPCI) in 2018, we retrospectively registered the AAHF, defined as classes II-IV by Killip Kimbal classification. Additionally, we registered admission clinical data, potentially contributing to AAHF in STEMI patients such as gender, age ≥65 years, prior resuscitation, admission cTnI ≥5 μg/L (normal levels up to 0.045 μg/L), comorbidities, time to PPCI, and mean daily levels of PM2.5 ≥20 μg/m3 one day before admission. Mean daily, freely available, levels of PM2.5 were measured and registered by Chemical analytic laboratory of Environmental agency of Republic Slovenia. We evaluated the predictive role of admission data for admission AHF in STEMI patients. Results AAHF was observed in 34.5% of STEMI patients with the mean daily PM2.5 level 15.7±10.9 μg/m3 on the day before admission. PPCI was performed in 92.1% of all STEMI patients, in AAHF in 87.1% and in non-AAHF patients in 94.7% (p=0.037). AAHF in comparison to non-AAHF was associated significantly with female gender (50.5% vs 25.9%, p<0.001), age over 65 years (71.3% vs 45%, p<0.001), prior diabetes (33.7% vs 14.8%, p<0.001), left bundle branch block (LBBB) (10.9% vs 0.5%, <0.001), admission cTnI ≥5 μg/L (46.7% vs 25.9%, p<0.001) and mean daily levels of PM2.5 ≥20 μg/m3 one day before admission (31.7% vs 19%, p=0.020), but nonsignificantly with arterial hypertension, prior myocardial infarction, anterior STEMI and time to PPCI. Logistic regression demonstrated that significant independent predictors of AAHF were age over 65 years (OR 3.349, 95% CI 1.787 to 6.277, p<0.001), prior diabetes (OR 2.934, 95% CI 1.478 to 5.821, p=0.002), admission LBBB (OR 10.526, 95% CI 1.181 to 93.787, p=0.03), prior resuscitation (OR 3.221, 95% CI 1.336 to 7.761, p=0.009), admission cTnI ≥5μg/l (OR 2.984, 95% CI 1.618 to 5.502, p<0.001) and mean daily levels of PM2.5 ≥20 μg/m3 (OR 2.096, 95% CI 1.045 to 4.218, p=0.038) one day before admission. Conclusion Mean daily levels of PM2.5 ≥20μg/m3 one day before admission were among significant independent predictors of AAHF in STEMI patients. FUNDunding Acknowledgement Type of funding sources: None.


2020 ◽  
Vol 13 (12) ◽  
pp. 442
Author(s):  
Karol Sikora ◽  
Maciej Jaśkiewicz ◽  
Damian Neubauer ◽  
Dorian Migoń ◽  
Wojciech Kamysz

Peptides and proteins constitute a large group of molecules that play multiple functions in living organisms. In conjunction with their important role in biological processes and advances in chemical approaches of synthesis, the interest in peptide-based drugs is still growing. As the side chains of amino acids can be basic, acidic, or neutral, the peptide drugs often occur in the form of salts with different counter-ions. This review focuses on the role of counter-ions in peptides. To date, over 60 peptide-based drugs have been approved by the FDA. Based on their area of application, biological activity, and results of preliminary tests they are characterized by different counter-ions. Moreover, the impact of counter-ions on structure, physicochemical properties, and drug formulation is analyzed. Additionally, the application of salts as mobile phase additives in chromatographic analyses and analytical techniques is highlighted.


Author(s):  
Adrian Hoppa ◽  
Daria Sikorska ◽  
Arkadiusz Przybysz ◽  
Marta Melon ◽  
Piotr Sikorski

Air pollution is now considered to be the world’s largest environmental health threat accounting for millions of deaths globally each year. The social group that is particularly exposed to the harmful effects of air pollution is the children. A daily route to school can constitute an important component of children’s physical activity, but air pollution can pose a threat to their health. Numerous studies have proved high loads of PM can be effectively reduced by vegetation. Little is however known, whether vegetation can also reduce PM during the leaf dormancy period. In this study, we investigated the role of trees in PM removal on children’s routes to schools during winter. We investigated walking routes to selected schools in Warsaw, by examining the adjacent vegetation and PM2.5 and PM10 concentrations and the presence of local black-smoke-belching stoves. We found that proximity to local CHP emitters had the strongest impact on pollution on the way to schools, while not finding a significant relationship between dense greenery and PM loads. Even more, the highest density of vegetation along walking routes tended to stimulate higher PM concentrations. The results obtained show the poor performance of tree canopy in reducing PM loads during winter.


2021 ◽  
Author(s):  
Pramod Kumar ◽  
Sushil Kumar

Biorelevant metal ions such as Cu2+ and Fe2+/Fe3+ participate in various biological events which include electron transfer reactions, delivery and uptake of oxygen, DNA and RNA syntheses, and enzymatic catalysis to maintain fundamental physiological processes in living organisms. So far, several analytical techniques have been investigated for their precise detection; however, luminescence-based sensing is often superior due to its high sensitivity, selectivity, fast and easy operation and convenient cellular imaging. Owing to their immense photophysical and photochemical properties stemming from large Stokes shift, absorption in visible region, good photostability and long excited state lifetimes, Ru(II)-polypyridyl-based complexes have gained increasing interest as luminophores. Over past few decades, several Ru(II)-polypyridyl based chemosensors have rapidly been developed for detection of different biorelevant and other metal ions. The main object of this book chapter is to cover a majority of Ru(II)-polypyridyl based chemosensors showing a selective and sensitive detection of bio-relevant Cu2+ and Fe2+/Fe3+ ions. The photophysical properties of Ru(II) complexes, detection of metal ions, sensing mechanism and applications of these sensors are discussed at a length.


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


2020 ◽  

Although current circumstances pose challenges to foretelling the future consequences of coronavirus spread, we consider environmental load-related researches became more and more important nowadays perhaps as never before. Many experts believe that the increasingly dire public health emergency situation, policy makers and word leaders should make it possible that the COVID-19 outbreak contributes to a transition of sustainable consumption. With the purpose of contributing to rethink the importance of sustainability efforts, here we present total suspended particulates (TSP) results which represent traffic emission caused air pollution in the three most populous cities of Ecuador obtained before, during, and after the: (i) the traffic measures entered into force on state level; (ii) curfew entered into force on state level; (iii) and quarantine entered into force (in Guayaquil, and whole Guayas province). We documented significant decrease in TSP emissions (PM2.5 and PM10) compared to normal traffic operation obtained from some four lanes roads in Quito, Guayaquil, and Cuenca. The most remarkable fall in suspended particulate values (96.47% decrease in PM2.5) compared to emission observed before traffic measures occurred in Cuenca.


1991 ◽  
Vol 56 (4) ◽  
pp. 923-932
Author(s):  
Jana Stejskalová ◽  
Pavel Stopka ◽  
Zdeněk Pavlíček

The ESR spectra of peroxidase systems of methaemoglobin-ascorbic acid-hydrogen peroxide and methaemoglobin-haptoglobin complex-ascorbic acid-hydrogen peroxide have been measured in the acetate buffer of pH 4.5. For the system with methaemoglobin an asymmetrical signal with g ~ 2 has been observed which is interpreted as the perpendicular region of anisotropic spectrum of superoxide radical. On the other hand, for the system with methaemoglobin-haptoglobin complex the observed signal with g ~ 2 is symmetrical and is interpreted as a signal of delocalized electron. After realization of three repeatedly induced peroxidase processes the ESR signal of the perpendicular part of anisotropic spectrum of superoxide radical is distinctly diminished, whereas the signal of delocalized electron remains practically unchanged. An amino acid analysis of methaemoglobin along with results of the ESR measurements make it possible to derive a hypothesis about the role of haptoglobin in increasing of the peroxidase activity of methaemoglobin.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 639
Author(s):  
Domenico Ribatti ◽  
Francesco Pezzella

Angiogenesis is a crucial event in the physiological processes of embryogenesis and wound healing. During malignant transformation, dysregulation of angiogenesis leads to the formation of a vascular network of tumor-associated capillaries promoting survival and proliferation of the tumor cells. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. Over this period numerous authors published data of vascularization of tumors, which attributed the cause of neo-vascularization to various factors including inflammation, release of angiogenic cytokines, vasodilatation, and increased tumor metabolism. More recently, it has been demonstrated that tumor vasculature is not necessarily derived by endothelial cell proliferation and sprouting of new capillaries, but alternative vascularization mechanisms have been described, namely vascular co-option and vasculogenic mimicry. In this article, we have analyzed the mechanisms involved in tumor vascularization in association with classical angiogenesis, including post-natal vasculogenesis, intussusceptive microvascular growth, vascular co-option, and vasculogenic mimicry. We have also discussed the role of these alternative mechanism in resistance to anti-angiogenic therapy and potential therapeutic approaches to overcome resistance.


Sign in / Sign up

Export Citation Format

Share Document