scholarly journals Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 581 ◽  
Author(s):  
Thomas Sepperer ◽  
Gianluca Tondi ◽  
Alexander Petutschnigg ◽  
Timothy M. Young ◽  
Konrad Steiner

With the extensive use of nitrogen-based fertilizer in agriculture, ammonia emissions, especially from cattle manure, are a serious environmental threat for soil and air. The European community committed to reduce the ammonia emissions by 30% by the year 2030 compared to 2005. After a moderate initial reduction, the last report showed no further improvements in the last four years, keeping the 30% reduction a very challenging target for the next decade. In this study, the mitigation effect of different types of tannin and tannin-based adsorbent on the ammonia emission from manure was investigated. Firstly, we conducted a template study monitoring the ammonia emissions registered by addition of the tannin-based powders to a 0.1% ammonia solution and then we repeated the experiments with ready-to-spread farm-made manure slurry. The results showed that all tannin-based powders induced sensible reduction of pH and ammonia emitted. Reductions higher than 75% and 95% were registered for ammonia solution and cattle slurry, respectively, when using flavonoid-based powders. These findings are very promising considering that tannins and their derivatives will be extensively available due to the increasing interest on their exploitation for the synthesis of new-generation “green” materials.

2010 ◽  
Vol 93 (6) ◽  
pp. 2377-2386 ◽  
Author(s):  
S.A. Burgos ◽  
N.M. Embertson ◽  
Y. Zhao ◽  
F.M. Mitloehner ◽  
E.J. DePeters ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1222
Author(s):  
Thomas Sepperer ◽  
Alexander Petutschnigg ◽  
Konrad Steiner

With the increasing demand for food worldwide, the use of fertilizers in the agricultural industry has grown. Natural fertilizers derived from the use of animal manure slurry, especially cattle and cow, are responsible for 40% of the agricultural ammonia emission. The EU defined the goal to reduce NH3 emission drastically until 2030, yet until today an overall increase has been observed, making it more difficult to reach the target. In this study, we used two by-products from the dairy industry, namely flushing milk and acidic whey, to lower the pH of cattle manure slurry and therefore mitigate the loss of nitrogen in the form of ammonia into the atmosphere, making it available in the soil. Measurements of pH, ammonium nitrogen, total Kjeldahl nitrogen, and lactic acid bacteria colonies were conducted in a lab-scale experiment to test the hypothesis. Afterwards, pH measurements were conducted on bigger samples. We found that whey effectively reduced the pH of manure below 5, therefore moving the ammonia/ammonium equilibrium strongly towards ammonium. Flushing milk on the other hand lowered the pH to a smaller extent, yet allowed for faster hydrolysis of urea into ammonium. The findings in this study present a suitable and environmentally friendly approach to help reach the climate goals set by the EU by using by-products from the same industry branch, therefore being a suitable example of circular economy.


2013 ◽  
Author(s):  
Luiz Carlos Daemme ◽  
Renato de Arruda Penteado ◽  
Cláudio Furlan ◽  
Marcelo Errera ◽  
Fátima M. Z. Zotin

AGROFOR ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Maarit HELLSTEDT ◽  
Hannu E.S. HAAPALA

Agriculture is the most significant source of Ammonia emission that causes e.g. loss of Nitrogen from agricultural systems. Manure is the main source of Ammonia emissions and causes losses in the nutrient cycles of agriculture as well as local odour nuisance. By using different bedding materials, it is possible to reduce both the Ammonia emissions and to improve the cycling of nutrient. Peat is known as an effective litter material but its use as a virtually non-renewable resource is questionable. Therefore, we need to find new bedding materials to replace peat. In this study, the effect of ten different industrial by-products, reeds and stalks to reduce Ammonia emissions was tested in laboratory in January 2020. Dairy cow slurry and bedding materials were mixed in a volume ratio of 4:1. The Ammonia emission was measured for two weeks once or twice a day. Measurements were performed with a photoacoustic method. The results show that all tested materials reduce the Ammonia emission from the cow slurry used. Interesting new materials to substitute peat are zero fiber and briquetted textile waste. Wheat bran, pellets made of reed canary grass and chopped bulrush had the best effect which is at the same level as that of peat. However, no statistically significant differences between the calculated emission rates were found.


Author(s):  
Rhenny Ratnawati ◽  
Sugito Sugito

The process of aerobic composting the slaughterhouse (SH) solid waste generate ammonia emissions. Aim: The objective of this research to study the ability of the adsorbent to use zeolite to reduce ammonia gas emissions during the composting process of SH solid waste. Methodology and Results: Reduction of ammonia emission is conducted during the aerobic composting process which is 50 days. The raw material composition of the composting process used was 100% rumen contents, 60% rumen contents: 40% straw, 50% rumen contents: 50% straw, and 40% rumen contents: 60% straw. Zeolite used in the form of granular size 100 mesh. The result of the research showed that the level of release of ammonia gas emissions during the composting process could be reduced by zeolite. Conclusion, significance, and impact study: The efficiency of reducing ammonia gas emissions using zeolite adsorbents in the composting process of SH solid waste ranges from 98.09 - 99.40% on average. Zeolite is an adsorbent that has high adsorption power because it has many pores and has a high ion exchange high capacity and serves as an absorbent cation that can cause environmental pollution.


2021 ◽  
Author(s):  
Enrico Dammers ◽  
Mark Shephard ◽  
Evan White ◽  
Debora Griffin ◽  
Evan Chow ◽  
...  

<p>While ammonia (NH3) at its current levels is known to be a hazard to environmental and human health, the atmospheric budget is still quite uncertain. This can largely be attributed to the short lifetime of ammonia in combination with an overall lack of (dense) in-situ measurement networks. The capability to observe ammonia distributions with satellites has opened new ways to study the atmospheric ammonia budget. Previous studies have demonstrated the capability of current ammonia satellite sensors to resolve emissions from point like sources, biomass burning, and constraining emission sources at a regional level with methods involving the use of air quality models.</p><p>In this study, we present the first spatially resolved ammonia emission estimates across the globe using a consistent methodology based solely on ammonia satellite observations from the Cross-track Infrared Sounder (CrIS) instrument and ECMWF ERA5 wind fields. The concept was evaluated for North Western Europe and demonstrated the ability to constrain annual emissions at county- to provincial-levels with most deviations within the bounds found in the error analysis. Furthermore, we show that for some regions the spatial patterns found in the satellite observations are consistent while others do not match the current inventories. Finally, the results indicate that the absolute emission levels tend to be underestimated for parts of the globe.</p>


2009 ◽  
Vol 2 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Thomas Veens ◽  
Hwan Namkung ◽  
Steven Leeson

Ammonia emissions from poultry farms currently contribute to air pollution and acid rain. There are no regulations in North America regarding emissions of ammonia although regulations are being drawn up in the USA and there is concern about the impacts of animal agricultural on the environment. Low crude protein (CP) diets can be an effective contributor to strategies of ammonia mitigation. Since virtually all ammonia originates from nitrogenous compounds in feed, then any attempt at ammonia mitigation must involve scrutiny of the levels of nitrogen, protein and amino acids (AA). Reducing dietary nitrogen/CP leads to reduced nitrogen in the excreta with less potential for microbial conversion to ammonia. Using low CP diets may be an economical strategy for ammonia emissions since the concept involves no special feed additives other than replacement AAs. Although AA requirements for layer hens are well known, the minimal amount of CP required is less clearly defined. AA requirements should be independent of diet CP, assuming there is adequate nitrogen for protein synthesis. However, the birds/ response in terms of reduced egg numbers and growth or change in egg composition, suggest that our estimates of amino acid supply are incorrect under these dietary regimes. Independent of bird age and AA supply, more problems are recorded when CP levels are <14-15%. It is timely to redefine the maintenance AA requirements of layers. Since the composition of eggs should give us direct estimates of needs for production, the only other unknown in formulating low CP diets is the efficiency of utilisation of free amino acids versus intact proteins.


1996 ◽  
Vol 127 (4) ◽  
pp. 501-509 ◽  
Author(s):  
T. Dewes

SUMMARYIn laboratory tests using stable manure consisting of wheat straw and slurry, ammonia emission was found to have two peaks corresponding to the population dynamics of proteolytic bacteria and amino acid-degrading bacteria respectively. Cumulative ammonia emissions over 14 days were 0·8–23·2% of the initial total nitrogen (Nt) and were both abiotically and biotically induced. Changes in pH had the most significant effect on the abiotically induced ammonia emissions. After 14 days of decomposition, at pH values of 6·0 and 7·5, abiotically induced emissions remained close to the limit of detectability, whereas at pH 9·0 as much as 9·8% of the initial Nt was lost. An increase in storage pressure from 0 to 400 and 800 kp/m2 generally decreased the biotic emissions to 9·6, 2·8 and 2·3%; while increasing the amounts of litter (2·5, 5·0 and 15·0 kg straw/LAU per day) led to a decline not only in the biotic (17·1, 12·8, 3·5%) but also in the abiotic emissions (6·1, 5·5, 1·6%). Varying the temperature (20, 30 and 40 °C) resulted in biotically induced emissions of 7·9, 11·7 and 11·6%, respectively, and abiotically induced emissions of 1·1, 1·4 and 2·2% of the initial Nt. At temperatures of 30 and 40 °C, the amount of microbially digested sources of carbon available was obviously sufficient to permit almost total reincorporation of NH4+ from 4 days onwards.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.


Sign in / Sign up

Export Citation Format

Share Document