scholarly journals Self-Organogenesis from 2D Micropatterns to 3D Biomimetic Biliary Trees

2021 ◽  
Vol 8 (8) ◽  
pp. 112
Author(s):  
Emilie Gontran ◽  
Lorena Loarca ◽  
Cyrille El Kassis ◽  
Latifa Bouzhir ◽  
Dmitry Ayollo ◽  
...  

Background and Aims: Globally, liver diseases account for 2 million deaths per year. For those with advanced liver disease the only curative approach is liver transplantation. However, less than 10% of those in need get a liver transplant due to limited organ availability. To circumvent this challenge, there has been a great focus in generating a bioengineered liver. Despite its essential role in liver functions, a functional biliary system has not yet been developed. In this framework, exploration of epithelial cell self-organogenesis and microengineering-driven geometrical cell confinement allow to envision the bioengineering of a functional biomimetic intrahepatic biliary tract. Approach: three-dimensional (3D) bile ducts were built in vitro by restricting cell adhesion to two-dimensional (2D) patterns to guide cell self-organization. Tree shapes mimicking the configuration of the human biliary system were micropatterned on glass slides, restricting cell attachment to these areas. Different tree geometries and culture conditions were explored to stimulate self-organogenesis of normal rat cholangiocytes (NRCs) used as a biliary cell model, either alone or in co-culture with human umbilical endothelial cells (HUVECs). Results: Pre-seeding the micropatterns with HUVECs promoted luminogenesis with higher efficiency to yield functional branched biliary tubes. Lumen formation, apico-basal polarity, and preservation of the cholangiocyte phenotype were confirmed. Moreover, intact and functional biliary structures were detached from the micropatterns for further manipulation. Conclusion: This study presents physiologically relevant 3D biliary duct networks built in vitro from 2D micropatterns. This opens opportunities for investigating bile duct organogenesis, physiopathology, and drug testing.


Author(s):  
Emilie Gontran ◽  
Lorena Loarca ◽  
Cyrille El Khassis ◽  
Latifa Bouzhir ◽  
Dmitry Ayollo ◽  
...  

Background & Aims: Globally, liver diseases account for 2 million deaths per year. For those with advanced liver disease the only curative approach is liver transplantation. However, less than 10% of those in need get a liver transplant due to limited organ availability. To circumvent this challenge, there has been a great focus in generating a bioengineered liver. Despite its essential role in liver functions, a functional biliary system has not yet been developed. In this framework, exploration of epithelial cell self-organogenesis and microengineering-driven geometrical cell confinement allow to envision the bioengineering of a functional biomimetic intrahepatic biliary tract. Approach: Three-dimensional (3D) bile ducts were built in vitro by restricting cell adhesion to two-dimensional (2D) patterns to guide cell self-organization. Tree shapes mimicking the configuration of the human biliary system were micropatterned on glass slides, restricting cell attachment to these areas. Different tree geometries and culture conditions were explored to stimulate self-organogenesis of normal rat cholangiocytes (NRCs) used as a biliary cell model, either alone or in coculture with human umbilical endothelial cells (HUVECs). Results: Pre-seeding the micropatterns with HUVECs promoted luminogenesis with higher efficiency to yield functional branched biliary tubes. Lumen formation, apico-basal polarity, and preservation of the cholangiocyte phenotype were confirmed. Moreover, intact and functional biliary structures were detached from the micropatterns for further manipulation. Conclusion: This study presents physiologically relevant 3D biliary duct networks built in vitro from 2D micropatterns. This opens opportunities for investigating bile duct organogenesis, physiopathology, and drug testing.



2021 ◽  
Vol 22 (2) ◽  
pp. 475
Author(s):  
Parastoo Memarian ◽  
Francesco Sartor ◽  
Enrico Bernardo ◽  
Hamada Elsayed ◽  
Batur Ercan ◽  
...  

Carbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR. Biocompatibility analyses through 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) activity, hemolysis assay, and Ames test demonstrated excellent biocompatibility of both materials. A significant increase in the extracellular alkaline phosphatase (ALP) activity and expression of runt-related transcription factor (RUNX), ALP, osterix (OSX), and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes was observed in C-Bio scaffolds compared to those without carbon (Bio). Scanning electron microscopy (SEM) demonstrated excellent cell attachment on both material surfaces; however, the cellular layer on C-Bio fibers exhibited an apparent secretome activity. Based on our findings, graphene can improve cell adhesion, growth, and osteogenic differentiation of cAD-MSCs in vitro. This study proposed carbon as an additive for a novel three-dimensional (3D)-printable biocompatible scaffold which could become the key structural material for bone tissue reconstruction.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heema K. N. Vyas ◽  
Jason D. McArthur ◽  
Martina L. Sanderson-Smith

AbstractGroup A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.



2021 ◽  
Author(s):  
Yanbo DONG ◽  
Jian WANG ◽  
Wei JI ◽  
Mengzhu ZHENG ◽  
Peng WANG ◽  
...  

Abstract Purpose Management of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) remains highly challenging due to their anatomic location and highly variable therapeutic responses. We aim to establish a new in vitro model for LHSCC based on conditional reprogramming (CR), a novel cell-culture technique, and investigate its potential value on personalized cancer therapies. Methods Primary LHSCC cells were isolated from tumor specimens and cultured under CR conditions. The characteristics and malignant potential of cells were evaluated by histological staining, whole-exome sequencing and heterotransplantation. The responses of CR tumor cells to anticancer drugs and radiotherapy were tested using cell proliferation assay. CR cells could form xenografts and organoids, which were used for drug testing respectively. Clinical responses for certain patients were also compared with in vitro responses. Results A panel of 28 human LHSCC CR cells were established from 50 tumor tissues. They retain tumorigenic potential upon xenotransplantation and recapitulate molecular characteristics of LHSCC. Differential responses to anticancer drugs and radiotherapy were detected in vitro. CR cells can be transformed to xenograft and organoid, shared comparable drug responses. The clinical drug responses were consistent with in vitro drug responses. Conclusions The patient-derived CR cell model could promisingly be utilized in clinical decision-making and assist in the selection of personalized therapies for LHSCC.



Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.



Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 203 ◽  
Author(s):  
Chun-Hao Tsai ◽  
Chih-Hung Hung ◽  
Che-Nan Kuo ◽  
Cheng-Yu Chen ◽  
Yu-Ning Peng ◽  
...  

Recently, cases of bone defects have been increasing incrementally. Thus, repair or replacement of bone defects is gradually becoming a huge problem for orthopaedic surgeons. Three-dimensional (3D) scaffolds have since emerged as a potential candidate for bone replacement, of which titanium (Ti) alloys are one of the most promising candidates among the metal alloys due to their low cytotoxicity and mechanical properties. However, bioactivity remains a problem for metal alloys, which can be enhanced using simple immersion techniques to coat bioactive compounds onto the surface of Ti–6Al–4V scaffolds. In our study, we fabricated magnesium-calcium silicate (Mg–CS) and chitosan (CH) compounds onto Ti–6Al–4V scaffolds. Characterization of these surface-modified scaffolds involved an assessment of physicochemical properties as well as mechanical testing. Adhesion, proliferation, and growth of human Wharton’s Jelly mesenchymal stem cells (WJMSCs) were assessed in vitro. In addition, the cell attachment morphology was examined using scanning electron microscopy to assess adhesion qualities. Osteogenic and mineralization assays were conducted to assess osteogenic expression. In conclusion, the Mg–CS/CH coated Ti–6Al–4V scaffolds were able to exhibit and retain pore sizes and their original morphologies and architectures, which significantly affected subsequent hard tissue regeneration. In addition, the surface was shown to be hydrophilic after modification and showed mechanical strength comparable to natural bone. Not only were our modified scaffolds able to match the mechanical properties of natural bone, it was also found that such modifications enhanced cellular behavior such as adhesion, proliferation, and differentiation, which led to enhanced osteogenesis and mineralization downstream. In vivo results indicated that Mg–CS/CH coated Ti–6Al–4V enhances the bone regeneration and ingrowth at the critical size bone defects of rabbits. These results indicated that the proposed Mg–CS/CH coated Ti–6Al–4V scaffolds exhibited a favorable, inducive micro-environment that could serve as a promising modification for future bone tissue engineering scaffolds.



2020 ◽  
Vol 8 (5) ◽  
pp. 594-606 ◽  
Author(s):  
Pierre-Olivier Frappart ◽  
Karolin Walter ◽  
Johann Gout ◽  
Alica K Beutel ◽  
Mareen Morawe ◽  
...  

Background Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. Methods We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. Results First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. Conclusion Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.



2012 ◽  
Vol 9 (77) ◽  
pp. 3528-3538 ◽  
Author(s):  
Wen L. Chai ◽  
Ian M. Brook ◽  
Anders Palmquist ◽  
Richard van Noort ◽  
Keyvan Moharamzadeh

For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant–soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant–soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different.



Author(s):  
I. M. Sebastine ◽  
D. J. Williams

Tissue engineering aims to restore the complex function of diseased tissue using cells and scaffold materials. Tissue engineering scaffolds are three-dimensional (3D) structures that assist in the tissue engineering process by providing a site for cells to attach, proliferate, differentiate and secrete an extra-cellular matrix, eventually leading cells to form a neo-tissue of predetermined, three-dimensional shape and size. For a scaffold to function effectively, it must possess the optimum structural parameters conducive to the cellular activities that lead to tissue formation; these include cell penetration and migration into the scaffold, cell attachment onto the scaffold substrate, cell spreading and proliferation and cell orientation. In vivo, cells are organized in functional tissue units that repeat on the order of 100 μm. Fine scaffold features have been shown to provide control over attachment, migration and differentiation of cells. In order to design such 3D featured constructs effectively understanding the biological response of cells across length scales from nanometer to millimeter range is crucial. Scaffold biomaterials may need to be tailored at three different length scales: nanostructure (<1μm), microstructure (<20–100μm), and macrostructure (>100μm) to produce biocompatible and biofunctional scaffolds that closely resemble the extracellular matrix (ECM) of the natural tissue environment and promote cell adhesion, attachment, spreading, orientation, rate of movement, and activation. Identification of suitable fabrication techniques for manufacturing scaffolds with the required features at multiple scales is a significant challenge. This review highlights the effect and importance of the features of scaffolds that can influence the behaviour of cells/tissue at different length scales in vitro to increase our understanding of the requirements for the manufacture of functional 3D tissue constructs.



2001 ◽  
Vol 75 (11) ◽  
pp. 5335-5342 ◽  
Author(s):  
Kartik Chandran ◽  
Xing Zhang ◽  
Norman H. Olson ◽  
Stephen B. Walker ◽  
James D. Chappell ◽  
...  

ABSTRACT Mammalian reoviruses, prototype members of theReoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins—ς1, μ1, and ς3—to enter host cells. ς1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of ς1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by “recoating” genome-containing core particles that lacked ς1, μ1, and ς3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to ς1. The recoated particles bound to and infected cultured cells in a ς1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant ς1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the ς1 protein. Additional experiments showed that recoated particles containing ς1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound ς1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of ς1 with respect to its structure, assembly into particles, and roles in entry.



Sign in / Sign up

Export Citation Format

Share Document