scholarly journals Bioprocess Optimization for the Production of Arthrospira (Spirulina) platensis Biomass Enriched in the Enzyme Alkaline Phosphatase

2021 ◽  
Vol 8 (10) ◽  
pp. 142
Author(s):  
Giorgos Markou

The enzyme alkaline phosphatase (ALP) is gaining interest because it exerts bioactive properties and may be a potentially important therapeutic agent for many disorders and diseases. Microalgae are considered an important novel source for the production of diverse bio-compounds and are gaining momentum as functional foods/feeds supplements. So far, studies for the production of ALP are limited to mammalian and partly to some heterotrophic microbial sources after its extraction and/or purification. Methods: Arthrospira was cultivated under P-limitation bioprocess and the effect of the P-limitation degree on the ALP enrichment was studied. The aim of this work was to optimize the cultivation of the edible and generally-recognized-as-safe (GRAS) cyanobacterium Arthrospira platensis for the production of single-cell (SC) biomass enriched in ALP as a potential novel functional diet supplement. Results: The results revealed that the relationship between intracellular-P and single-cell alkaline phosphatase (SC-ALP) activity was inverse; SC-ALP activity was the highest (around 50 U g−1) when intracellular-P was the lowest possible (around 1.7 mg-P g−1) and decreased gradually as P availability increased reaching around 0.5 U g−1 in the control cultures. Under the strongest P-limited conditions, a more than 100-fold increase in SC-ALP activity was obtained; however, protein content of A. platensis decreased significantly (around 22–23% from 58%). Under a moderate P-limitation degree (at intracellular-P of 3.6 mg-P g−1), there was a relatively high SC-ALP activity (>28 U g−1) while simultaneously, a relative high protein content (46%) was attained, which reflects the possibility to produce A. platensis enriched in ALP retaining though its nutritional value as a protein rich biomass source. The paper presents also results on how several parameters of the ALP activity assay, such as pH, temperature etc., and post-harvest treatment (hydrothermal treatment and biomass drying), influence the SC-ALP activity.

Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 63
Author(s):  
Abdurrahman Masrahi ◽  
Anil Somenahally ◽  
Terry Gentry

The limited availability of soil phosphorus to plants under salinity stress is a major constraint for crop production in saline soils, which could be alleviated by improving mycorrhizal and soil microbial interactions. This study investigated the effects of Funneliformis mosseae (Fm) inoculation on phosphorus (P) availability to Sorghum bicolor, and alkaline phosphatase (ALP) activity and gene abundance (phoD) in a P-deficient naturally saline soil. A greenhouse study was conducted in order to compare the experimental treatments of Fm inoculated vs. control plants grown in saline soil with and without (sterilized soil) native microbial community. A separate hyphosphere (root-free) compartment was constructed within the mycorrhizosphere and amended with phosphate. After four weeks of transplanting, shoot, roots, mycorrhizosphere, and hyphosphere samples were collected and analyzed for soil and plant P concentrations, root colonization, and abundance of ALP and phoD. The results showed significantly higher colonization in Fm-inoculated treatments compared to uninoculated. Plant available P concentrations, phoD gene abundance and ALP activity were significantly reduced (p < 0.05) in sterilized-hyphosphere as compared to unsterilized in both Fm-inoculated and uninoculated treatments. Inoculation with Fm significantly increased the plant P uptake (p < 0.05) when compared to uninoculated treatments, but only in the plants gown in unsterile mycorrhizosphere. It can be concluded that inoculation of Fm increased root colonization and the uptake of P by sorghum plant in saline soil and native microbial community interactions were critical for increasing bioavailable P concentrations. These beneficial interactions between plants, mycorrhizae, and native microbes should be considered for soil fertility management in saline soils.


1992 ◽  
Vol 49 (4) ◽  
pp. 694-700 ◽  
Author(s):  
William F. James ◽  
William D. Taylor ◽  
John W. Barko

Seasonal production of Ceratium hirundinella and its diel migratory patterns were examined in relation to phosphorus (P) availability in eutrophic Eau Galle Reservoir, Wisconsin (USA). During mid-June, hypolimnetic P gradients (0.030–1.045 mg∙L−1) developed as internal P loading was high (14.7–18.0 mg∙m−2∙d−1). Ceratium migrated as much as 4 m into the upper hypolimnion at night. Subsequent increases in Ceratium biomass, gross primary productivity, and chlorophyll a indicated retrieval of hypolimnetic P for production. During early July, anoxia restricted vertical migration of Ceratium into the hypolimnion. Surplus cellular P was low during this period, while alkaline phosphatase activity increased to a maximum, suggesting P limitation of Ceratium production. During late July and August, P-rich interflows from the Eau Galle River entered the reservoir at the base of the epilimnion. Ceratium migrated into these interflows at night, with corresponding increases and decreases in surplus cellular P and alkaline phosphatase activity, respectively. Ceratium production increased to a maximum in early September, following these periods of high external P input. These results directly support the hypothesis that Ceratium can access multiple P sources through vertical migration.


2000 ◽  
Vol 63 (9) ◽  
pp. 1258-1261 ◽  
Author(s):  
M. F. SCINTU ◽  
E. DAGA ◽  
A. LEDDA

The alkaline phosphatase (ALP) activity test has been used since 1935 to assess the effectiveness of pasteurization. Different analytical methods exist for detecting ALP in milk. Unfortunately, there is little information about ALP activity in ewe's milk. The aim of this study was to assess and compare the official European method (spectrophotometric method) and the Fluorophos method (fluorometric method) regarding their use in ewe's milk. Bulk ewe's milk samples were taken from a flock and from three different dairies. A portion of the original sample was pasteurized at 63°C for 30 min in a circulating bath; another portion was heated to and kept at 95°C for about 2 min, and 0.1% (vol/vol) of raw milk was added. The samples obtained were analyzed in duplicate using the spectrophotometric and fluorometric methods. The relation between ALP activity determined by the two methods was characterized by the following equation: Y = 1.34 + 0.0039X (where Y = ALP in μg of phenol per ml of milk and X = ALP in mU/liter; R2 = 91.5%). Precision parameters (repeatability [r], standard deviation of repeatability [sr], and relative standard deviation of repeatability [RSDr]) for both methods were calculated. The values of RSDr for the Fluorophos method were 4.30 for pasteurized milk and 2.96 for 0.1% raw milk, close to the value indicated by Rocco in whole cow's milk (RSDr = 4.4). The repeatability for the official method (r = 2.16) was close to that indicated for whole cow's milk (r = 2).


2002 ◽  
Vol 16 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Adalberto Luiz Rosa ◽  
Márcio Mateus Beloti ◽  
Richard van Noort ◽  
Paul Vincent Hatton ◽  
Anne Jane Devlin

Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity.


1997 ◽  
Vol 60 (5) ◽  
pp. 525-530 ◽  
Author(s):  
C. J. PAINTER ◽  
R. L. BRADLEY

Milk is routinely tested for proper pasteurization. The Scharer and Fluorophos methods, among others, test for residual alkaline phosphatase (ALP) activity to assure proper pasteurization. Until recently there were no tests available to accurately detect residual ALP activity levels below the U.S. legal limit of 1 μg of phenol or 350 mU of ALP per liter of milk. The new Fluorophos method can detect accurately residual ALP activity levels as low as 10 mU/liter. The Fluorophos method was used to investigate residual ALP activity levels in several fluid milk products. The milk products were thermally processed under various time and temperature protocols below, at, and above current U.S. Food and Drug Administration-mandated heat treatments for fluid milk and milk products. The data established values for residual ALP activity in milks pasteurized under high-temperature short-time (HTST) and low-temperature long-time (LTLT) treatments. The mean ALP activities for whole, 2% lowfat, 1% lowfat, skim, half and half, and chocolate-flavored milks thermally processed at the legal minimum HTST pasteurization treatment are 169.7 ± 12.3, 145.2 ± 9.3, 98.6 ± 8.9, 72.5 ± 4.2, 38.4 ± 4.6 and 157.3 ± 6.5 mU/liter, respectively. The mean ALP activities generated at the legal minimum LTLT pasteurization treatment are 81.8 ± 4.8, 66.4 ± 5.9, 56.4 ± 2.1, 39.1 ± 3.9, 35.0 ± 1.2 and 91.3 ± 7.7 mU/liter, respectively. The values for all milks pasteurized at the legal minimum heat treatment were significantly below the current legal cutoff for residual ALP activity of 350 mU/liter of milk or milk product.


2018 ◽  
Vol 17 (03) ◽  
pp. 289-292
Author(s):  
Pranesh ◽  
S. Ramesh

AbstractProtein energy malnutrition (PEM) is prevalent in south-east Asian countries including India. Breeding and introduction of grain protein-rich varieties of legumes such as dolichos bean is considered as cost-effective approach to combat PEM. Exploitation of genetic variability within germplasm accessions (GAs) and/or breeding populations is the short-term strategy for identification and delivery of protein-rich dolichos bean cultivars to cater to the immediate needs of the farmers and target population. A set of 118 dolichos bean genotypes consisting of 96 GAs and 20 advanced breeding lines (ABLs) and two released varieties (RVs) was field evaluated in augmented deign for dry grain yield per plant and their grain protein contents were estimated. The grain protein content among the genotypes ranged from 18.82 to 24.5% with a mean of 21.73%. The magnitude of estimates of absolute range, standardized range, and phenotypic coefficient of variation (PCV) for grain protein content was higher among GAs than those among ABLs + RVs. However, average grain protein contents of GAs were comparable to those of ABLs + RVs. Nearly 50% of the genotypes (mostly GAs) had significantly higher grain protein content than those of RVs, HA 3 and HA 4. The grain protein contents of the genotypes were poorly correlated with grain yield per plant. These results are discussed in relation to strategies to breed grain protein-rich dolichos bean cultivars.


1992 ◽  
Vol 38 (12) ◽  
pp. 2546-2551 ◽  
Author(s):  
V O Van Hoof ◽  
A T Van Oosterom ◽  
L G Lepoutre ◽  
M E De Broe

Abstract Early treatment of patients with malignant disease and liver or bone metastasis may increase their survival time. We have used the activity patterns of liver and bone isoenzymes of alkaline phosphatase (ALP), separated by agarose gel electrophoresis, to detect early metastasis. We studied ALP isoenzyme patterns in a background population of 101 patients with no evidence of any disease that might influence this pattern; a healthy reference population (n = 330); and the following three groups of patients: 143 with malignant disease, 47 with nonmalignant liver disease, and 22 with nonmalignant bone disease. Cutoff and predictive values of liver ALP, high-molecular-mass (high-M(r)) ALP, and bone ALP were established for detecting liver and bone metastasis. The positive predictive value of liver and high-M(r) ALP was higher than that of total ALP in detecting liver metastasis, but liver and high-M(r) ALP did not enable us to differentiate between malignant and nonmalignant liver disease. Total ALP activity was of slightly more value than liver and high-M(r) ALP in enabling us to rule out liver metastasis. From bone ALP activity we could not distinguish between nonmalignant bone disease and bone metastasis. The negative predictive value of bone ALP in the diagnosis of bone metastasis was low, but its positive predictive value was high and superior to that of total ALP.


1992 ◽  
Vol 263 (3) ◽  
pp. G371-G379
Author(s):  
B. L. Black ◽  
J. O. Rogers

The fluorescent probe fura-2 was used to assay Ca2+ levels in epithelial cell suspensions from embryonic and neonatal chick duodenum. Cell preparations maintained high viability, completely hydrolyzed fura-2/AM to fura-2, retained 92% of cellular fura-2 within the cytoplasmic compartment, and gave low autofluorescence values during assay. Fura-2 leakage from loaded cells occurred at all ages, but could be corrected for in subsequent calculations of cellular Ca2+. Cytoplasmic Ca2+ concentration was 76-80 nM in cells from 14- to 16-day embryonic intestine, rose significantly to 92-98 nM at 17-20 days, and reached 209 nM at 1-day post-hatch when assayed in buffers containing 1.3 mM Ca2+. The developmental rise in cytoplasmic Ca2+ was accompanied by an enhanced ability of cells to maintain a constant Ca2+ concentration at increased levels of extracellular Ca2+ and by a highly correlated rise in alkaline phosphatase (ALP) activity. Epithelial Ca2+ subsequently decreased to the "adult" value of 133-142 nM and was constant along the crypt-villus axis of neonatal intestine. These results verify that fura-2 can be used to compare baseline cytoplasmic Ca2+ values of epithelial cells from developing intestine, reveal that significant changes in Ca2+ homeostasis occur during ontogeny, and suggest that epithelial Ca2+ may modulate ALP activity during the differentiation of embryonic enterocytes.


2001 ◽  
Vol 280 (3) ◽  
pp. G510-G517 ◽  
Author(s):  
Takeshi Nikawa ◽  
Madoka Ikemoto ◽  
Kaori Tokuoka ◽  
Shigetada Teshima ◽  
David H. Alpers ◽  
...  

We previously showed that vitamin A upregulated the expression of bone-type alkaline phosphatase (ALP) in fetal rat small intestine and rat intestinal IEC-6 cells. In this study, we examined interactions between retinoic acid (RA) and several growth factors/cytokines on the isozyme expression in IEC-6 cells. Epidermal growth factor and interleukins (ILs)-2, -4, -5, and -6 completely blocked the RA-mediated increase in ALP activity. In contrast, IL-1β markedly increased the activity, protein, and mRNA of the bone-type ALP only when RA was present. IL-1β and/or RA did not change the type 1 IL-1 receptor transcript level, whereas IL-1β enhanced the RA-induced expressions of retinoic acid receptor-β (RAR-β) and retinoid X receptor-β (RXR-β) mRNAs and RA-mediated RXR response element binding. The synergism of IL-1β and RA on ALP activity was completely blocked by protein kinase C (PKC) inhibitors. Our results suggest that IL-1β may modify the ALP isozyme expression in small intestinal epithelial cells by stimulating PKC-dependent, RAR-β- and/or RXR-β-mediated signaling pathways.


2014 ◽  
Vol 11 (13) ◽  
pp. 3661-3683 ◽  
Author(s):  
C. Buendía ◽  
S. Arens ◽  
T. Hickler ◽  
S. I. Higgins ◽  
P. Porada ◽  
...  

Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.


Sign in / Sign up

Export Citation Format

Share Document