scholarly journals Diaportheone A Analogues Instigate a Neuroprotective Effect by Protecting Neuroblastoma SH-SY5Y Cells from Oxidative Stress

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 199
Author(s):  
Mario A. Tan ◽  
Elena Zakharova ◽  
Seong Soo A. An

Alzheimer’s disease (AD) remains an incurable neurodegenerative illness. Oxidative stress resulting in the formation of reactive oxygen species (ROS) and the abnormal deposition of amyloid-beta (Aβ) are the major pathological hallmarks associated with AD. In search for small molecules targeting multiple pathways of AD and of no known molecular targets, the neuroprotective effects of the synthetic chromones diaportheone A1 and diaportheone A2, analogues of the natural product diaportheone A, were investigated. Chromones are heterocyclic compounds bearing the benzoannelated γ-pyrone moiety and were regarded as an important class of organic molecules due to their diverse pharmacological activities. The influence of the compounds on the inhibition of Aβ aggregation was determined by Thioflavin T (ThT) assay, and the cell viability, ROS, and mitochondrial membrane potential were evaluated with human neuroblastoma SH-SY5Y cells. Results showed that both compounds inhibited the Aβ aggregation at 80.41% and 73.68% for diaportheone A1 and diaportheone A2, respectively. Increased cell viabilities were observed from the protection by both compounds using Aβ- or H2O2-induced SH-SY5Y cells. Both compounds also reduced the intracellular ROS level in Aβ- or H2O2-induced SH-SY5Y cells at 10 and 20 μM concentrations, and increased the mitochondrial membrane potentials in Aβ-induced SH-SY5Y cells at 20 μM concentration. Molecular docking experiments using the Aβ protein models 2MXU and 2BEG also indicated a good agreement with the experimental data. The results demonstrated for the first time the oxidative stress effects associated with the chromones diaportheone A1 and diaportheone A2 as potential neuroprotective therapeutic agents against AD.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kuppusamy Tamilselvam ◽  
Nady Braidy ◽  
Thamilarasan Manivasagam ◽  
Musthafa Mohamed Essa ◽  
Nagarajan Rajendra Prasad ◽  
...  

Rotenone a widely used pesticide that inhibits mitochondrial complex I has been used to investigate the pathobiology of PD bothin vitroandin vivo. Studies have shown that the neurotoxicity of rotenone may be related to its ability to generate reactive oxygen species (ROS), leading to neuronal apoptosis. The current study was carried out to investigate the neuroprotective effects of hesperidin, a citrus fruit flavanol, against rotenone-induced apoptosis in human neuroblastoma SK-N-SH cells. We assessed cell death, mitochondrial membrane potential, ROS generation, ATP levels, thiobarbituric acid reactive substances, reduced glutathione (GSH) levels, and the activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) using well established assays. Apoptosis was determined in normal, rotenone, and hesperidin treated cells, by measuring the protein expression of cytochrome c (cyt c), caspases 3 and 9, Bax, and Bcl-2 using the standard western blotting technique. The apoptosis in rotenone-induced SK-N-SH cells was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, the depletion of GSH, enhanced activities of enzymatic antioxidants, upregulation of Bax, cyt c, and caspases 3 and 9, and downregulation of Bcl-2, which were attenuated in the presence of hesperidin. Our data suggests that hesperidin exerts its neuroprotective effect against rotenone due to its antioxidant, maintenance of mitochondrial function, and antiapoptotic properties in a neuroblastoma cell line.


2021 ◽  
Author(s):  
Rafaella Carvalho Rossato ◽  
Alessandro Eustaquio Campos Granato ◽  
Jessica Cristina Pinto ◽  
Carlos Dailton Guedes de Oliveira Moraes ◽  
Geisa Nogueira Salles ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is a type of dementia that affects millions of people. Although there is no cure, several study strategies seek to elucidate the mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze the neuroprotective effect of taurine on human neuroblastoma, using an in vitro experimental model of oxidative stress induced by hydrocortisone in the SH-SY5Y cell line as a characteristic model of AD. The violet crystal assay was used for cell viability and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). After pretreatment with taurine, the SH-SY5Y cell showed an improvement in cell viability in the face of oxidative stress and improved cell morphology. Thus, the treatment presented a neuroprotective effect.GRAPHICAL ABSTRACT


2021 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) have antioxidant and neuroprotective effects. The purpose of this study was to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP+)-treated SH-SY5Y cells and underlying mechanism .Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected using 5,5'-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed by measuring the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62.Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of P62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+.Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2021 ◽  
Vol 10 (9) ◽  
pp. e55510918426
Author(s):  
Rafaella Carvalho Rossato ◽  
Alessandro Eustaquio Campos Granato ◽  
Carlos Dailton Guedes de Oliveira Moraes ◽  
Geisa Nogueira Salles ◽  
Cristina Pacheco Soares

Alzheimer's disease (AD) is the most common, progressive and irreversible neurodegenerative disorder, characterized by memory loss, cognitive impairment and behavioral abnormalities. Although there is no cure, several study strategies seek to elucidate mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze neuroprotective effects of taurine in human neuroblastoma (SH-SY5Y), using an in vitro experimental model of oxidative stress induced by hydrocortisone. This work showed for the first time that taurine can promote neuroprotection in SH-SY5Y under oxidative stress caused by hydrocortisone. Cell viability was evaluated using crystal violet and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). The viability of SH-SY5Y pre-treated with taurine and stressed with hydrocortisone was preserved, compared to the stressed only group, which was also morphologically observed. Therefore, taurine can represent a considerable therapeutic candidate in the prevention of neurodegenerative diseases, such as AD.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Parinee Kittimongkolsuk ◽  
Nattaporn Pattarachotanant ◽  
Siriporn Chuchawankul ◽  
Michael Wink ◽  
Tewin Tencomnao

Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional medicine, little is known about the neuroprotective effects of LR extracts. This study aims to investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT), superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels and significantly increased the expression of antioxidant genes after glutamate-induced oxidative stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective properties both in vitro and in vivo.


2021 ◽  
Vol 22 (12) ◽  
pp. 6603
Author(s):  
Bushra Shal ◽  
Adnan Khan ◽  
Ashraf Ullah Khan ◽  
Rahim Ullah ◽  
Gowhar Ali ◽  
...  

The present study aims to determine the neuroprotective effect of Bergenin against spatial memory deficit associated with neurodegeneration. Preliminarily, the protective effect of Bergenin was observed against H2O2-induced oxidative stress in HT-22 and PC-12 cells. Further studies were performed in 5xFAD Tg mouse model by administering Bergenin (1, 30 and 60 mg/kg; orally), whereas Bergenin (60 mg/kg) significantly attenuated the memory deficit observed in the Y-maze and Morris water maze (MWM) test. Fourier transform-infrared (FT-IR) spectroscopy displayed restoration of lipids, proteins and their derivatives compared to the 5xFAD Tg mice group. The differential scanning calorimeter (DSC) suggested an absence of amyloid beta (Aβ) aggregation in Bergenin-treated mice. The immunohistochemistry (IHC) analysis suggested the neuroprotective effect of Bergenin by increasing Reelin signaling (Reelin/Dab-1) and attenuated Aβ (1–42) aggregation in hippocampal regions of mouse brains. Furthermore, IHC and western blot results suggested antioxidant (Keap-1/Nrf-2/HO-1), anti-inflammatory (TLR-4/NF-kB) and anti-apoptotic (Bcl-2/Bax/Caspase-3) effect of Bergenin. Moreover, a decrease in Annexin V/PI-stained hippocampal cells suggested its effect against neurodegeneration. The histopathological changes were reversed significantly by Bergenin. In addition, a remarkable increase in antioxidant level with suppression of pro-inflammatory cytokines, oxidative stress and nitric oxide production were observed in specific regions of the mouse brains.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 539
Author(s):  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Giovanni Enrico Lombardo ◽  
Caterina Russo ◽  
Laura Musumeci ◽  
...  

Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.


2017 ◽  
Vol 44 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Shiho Yamadera ◽  
Yuya Nakamura ◽  
Masahiro Inagaki ◽  
Isao Ohsawa ◽  
Hiromichi Gotoh ◽  
...  

Aim: To examine the effects of vitamin E-coated dialyzer on oxidative stress in vitro. Methods: A dialyzer with a synthetic polymer membrane (APS-11SA) and vitamin E-coated dialyzer (VPS-11SA) were connected to a blood tubing line, and U937 cells were circulated in the device. The circulating fluid was collected at 1, 2, 5, 10, 25, and 50 cycles, which are estimated numbers of passes through the dialyzer. Intracellular reactive oxygen species (ROS) production, malondialdehyde (MDA), and Cu/Zn-superoxide dismutase (SOD) were quantified. Results: Intracellular ROS production was increased in the first cycle by APS-11SA and was decreased throughout the experiment by VPS-11SA. Intracellular ROS production in the VPS-11SA device was lower, and MDA levels were decreased. MDA levels were lower during VPS-11SA processing than during APS-11SA processing. Cu/Zn-SOD levels remained unchanged. Conclusion: Our results highlight anti-oxidative-stress effects of a vitamin E-coated dialyzer.


Sign in / Sign up

Export Citation Format

Share Document