scholarly journals Labelling Selective Sweeps Used in Durum Wheat Breeding from a Diverse and Structured Panel of Landraces and Cultivars

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 258
Author(s):  
Jose Miguel Soriano ◽  
Carolina Sansaloni ◽  
Karim Ammar ◽  
Conxita Royo

A panel of 387 durum wheat genotypes including Mediterranean landraces and modern cultivars was characterized with 46,161 diversity arrays technology (DArTseq) markers. Analysis of population structure uncovered the existence of five subpopulations (SP) related to the pattern of migration of durum wheat from the domestication area to the west of the Mediterranean basin (SPs 1, 2, and 3) and further improved germplasm (SPs 4 and 5). The total genetic diversity (HT) was 0.40 with a genetic differentiation (GST) of 0.08 and a mean gene flow among SPs of 6.02. The lowest gene flow was detected between SP 1 (presumably the ancient genetic pool of the panel) and SPs 4 and 5. However, gene flow from SP 2 to modern cultivars was much higher. The highest gene flow was detected between SP 3 (western Mediterranean germplasm) and SP 5 (North American and European cultivars). A genome wide association study (GWAS) approach using the top ten eigenvectors as phenotypic data revealed the presence of 89 selective sweeps, represented as quantitative trait loci (QTL) hotspots, widely distributed across the durum wheat genome. A principal component analysis (PCoA) using 147 markers with −log10p > 5 identified three regions located on chromosomes 2A, 2B and 3A as the main drivers for differentiation of Mediterranean landraces. Gene flow between SPs offers clues regarding the putative use of Mediterranean old durum germplasm by the breeding programs represented in the structure analysis. EigenGWAS identified selective sweeps among landraces and modern cultivars. The analysis of the corresponding genomic regions in the ‘Zavitan’, ‘Svevo’ and ‘Chinese Spring’ genomes discovered the presence of important functional genes including Ppd, Vrn, Rht, and gene models involved in important biological processes including LRR-RLK, MADS-box, NAC, and F-box.

2021 ◽  
Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.


Author(s):  
Priyanka Gupta ◽  
Hafssa Kabbaj ◽  
Khaoula El Hassouni ◽  
Marco Maccaferri ◽  
Miguel Sabchez-Garcia ◽  
...  

Flowering time is a critical stage for crop development as it regulates the ability of plants to adapt to an environment. To understand the genetic control of flowering time, a genome wide association study (GWAS) was conducted to identify the genomic regions associated with the control of this trait in durum wheat (Triticum durum Desf.). A total of 96 landraces and 288 modern lines were evaluated for days to heading, growing degree days, and accumulated day length at flowering across 13 environments spread across Morocco, Lebanon, Mauritania, and Senegal. These environments were grouped into four pheno-environments based on temperatures, day length and other climatic variables. Genotyping with 35K Axiom array generated 7,652 polymorphic SNPs in addition to 3 KASP markers associated to known flowering genes. In total, 34 significant QTLs were identified in both landraces and modern lines. Some QTLs had strong association with already known regulatory photoperiod genes, Ppd-A and Ppd-B and vernalization genes Vrn-A1, and Vrn3. However, these loci explained only 5 to 20% of variance for days to heading. Seven QTLs overlapped between the two germplasm groups in which Q.ICD.Eps-03 and Q.ICD.Vrn-17 consistently affected flowering time in all the pheno-environments, while Q.ICD.Eps-11 and Q.ICD.Ppd-12 were significant only in two pheno-environments and the combined analysis across all environments. These results help clarify the genetic mechanism controlling flowering time in durum wheat and show some clear distinctions to what is known for common wheat (Triticum aestivum L.)


2019 ◽  
Vol 116 (42) ◽  
pp. 21262-21267 ◽  
Author(s):  
Kenji Yano ◽  
Yoichi Morinaka ◽  
Fanmiao Wang ◽  
Peng Huang ◽  
Sayaka Takehara ◽  
...  

Elucidation of the genetic control of rice architecture is crucial due to the global demand for high crop yields. Rice architecture is a complex trait affected by plant height, tillering, and panicle morphology. In this study, principal component analysis (PCA) on 8 typical traits related to plant architecture revealed that the first principal component (PC), PC1, provided the most information on traits that determine rice architecture. A genome-wide association study (GWAS) using PC1 as a dependent variable was used to isolate a gene encoding rice, SPINDLY (OsSPY), that activates the gibberellin (GA) signal suppression protein SLR1. The effect of GA signaling on the regulation of rice architecture was confirmed in 9 types of isogenic plant having different levels of GA responsiveness. Further population genetics analysis demonstrated that the functional allele of OsSPY associated with semidwarfism and small panicles was selected in the process of rice breeding. In summary, the use of PCA in GWAS will aid in uncovering genes involved in traits with complex characteristics.


2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.


2011 ◽  
Vol 9 (3) ◽  
pp. 439-444 ◽  
Author(s):  
C. Rodríguez-Suárez ◽  
M. C. Ramírez ◽  
A. Martín ◽  
S. G. Atienza

Triticum urartu, the A-genome donor of tetraploid and hexaploid wheats, is a potential source of novel alleles for crop improvement. A fertile amphiploid between T. urartu (2n = 2x = 14; AuAu) and durum wheat cv ‘Yavaros’ (Triticum turgidum ssp. durum; 2n = 4x = 28, AABB) was obtained as a first step to making the genetic variability of the wild ancestor available to durum wheat breeding. The amphiploid was backcrossed with ‘Yavaros’ and the offspring from this cross was selfed. A plant from this progeny (founder line) with 28 chromosomes and active x and y subunits of the Glu-A1 locus of T. urartu was selfed, which resulted in the obtaining of 98 pre-introgression lines (pre-ILs). In this work, a set of 78 wheat chromosome-specific microsatellite markers (simple sequence repeats, SSR), uniformly distributed over the A genome, was used for marker-assisted selection of T. urartu in a durum wheat background. A total of 57 SSRs allowed a clear discrimination between T. urartu and ‘Yavaros’. This set of markers was further used for characterizing the pre-ILs, identifying and defining the T. urartu introgressed regions. The applicability of these markers is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kelechi Uchendu ◽  
Damian Ndubuisi Njoku ◽  
Agre Paterne ◽  
Ismail Yusuf Rabbi ◽  
Daniel Dzidzienyo ◽  
...  

Cassava breeders have made significant progress in developing new genotypes with improved agronomic characteristics such as improved root yield and resistance against biotic and abiotic stresses. However, these new and improved cassava (Manihot esculenta Crantz) varieties in cultivation in Nigeria have undergone little or no improvement in their culinary qualities; hence, there is a paucity of genetic information regarding the texture of boiled cassava, particularly with respect to its mealiness, the principal sensory quality attribute of boiled cassava roots. The current study aimed at identifying genomic regions and polymorphisms associated with natural variation for root mealiness and other texture-related attributes of boiled cassava roots, which includes fibre, adhesiveness (ADH), taste, aroma, colour, and firmness. We performed a genome-wide association (GWAS) analysis using phenotypic data from a panel of 142 accessions obtained from the National Root Crops Research Institute (NRCRI), Umudike, Nigeria, and a set of 59,792 high-quality single nucleotide polymorphisms (SNPs) distributed across the cassava genome. Through genome-wide association mapping, we identified 80 SNPs that were significantly associated with root mealiness, fibre, adhesiveness, taste, aroma, colour and firmness on chromosomes 1, 4, 5, 6, 10, 13, 17 and 18. We also identified relevant candidate genes that are co-located with peak SNPs linked to these traits in M. esculenta. A survey of the cassava reference genome v6.1 positioned the SNPs on chromosome 13 in the vicinity of Manes.13G026900, a gene recognized as being responsible for cell adhesion and for the mealiness or crispness of vegetables and fruits, and also known to play an important role in cooked potato texture. This study provides the first insights into understanding the underlying genetic basis of boiled cassava root texture. After validation, the markers and candidate genes identified in this novel work could provide important genomic resources for use in marker-assisted selection (MAS) and genomic selection (GS) to accelerate genetic improvement of root mealiness and other culinary qualities in cassava breeding programmes in West Africa, especially in Nigeria, where the consumption of boiled and pounded cassava is low.


2018 ◽  
Author(s):  
Gang Li ◽  
Henrique V. Figueiro ◽  
Eduardo Eizirik ◽  
William J. Murphy

Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of gene flow that result in a mosaic of phylogenetic signals that interact with recombinational variation. Here we tested the validity of this assumption with a recombination-aware analysis of whole genome sequences from 27 species of the cat family. We found that the prevailing phylogenetic signal within the autosomes is not always representative of speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within large, conserved X-chromosome recombination deserts that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ~40%. We conclude that standard phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic partitioning of phylogenetic signal relative to recombination rate, and its interplay with historical hybridization.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Şakir Burak Bükücü ◽  
Mehmet Sütyemez ◽  
Sina Kefayati ◽  
Aibibula Paizila ◽  
Abdulqader Jighly ◽  
...  

Abstract Breeding studies in walnut (Juglans regia L.) are usually time consuming due to the long juvenile period and therefore, this study aimed to determine markers associated with time of leaf budburst and flowering-related traits by performing a genome-wide association study (GWAS). We investigated genotypic variation and its association with time of leaf budburst and flowering-related traits in 188 walnut accessions. Phenotypic data was obtained from 13 different traits during 3 consecutive years. We used DArT-seq for genotyping with a total of 33,519 (14,761 SNP and 18,758 DArT) markers for genome-wide associations to identify marker underlying these traits. Significant correlations were determined among the 13 different traits. Linkage disequilibrium decayed very quickly in walnut in comparison with other plants. Sixteen quantitative trait loci (QTL) with major effects (R2 between 0.08 and 0.23) were found to be associated with a minimum of two phenotypic traits each. Of these QTL, QTL05 had the maximum number of associated traits (seven). Our study is GWAS for time of leaf budburst and flowering-related traits in Juglans regia L. and has a strong potential to efficiently implement the identified QTL in walnut breeding programs.


Author(s):  
Qi Zhu ◽  
Kun Xue ◽  
Hong Wei Guo ◽  
Fei Fei Deng ◽  
Yu Huan Yang

A genome-wide association study (GWAS) in the Han Chinese population had found that single nucleotide polymorphism (SNP) on the CMTM7 gene rs347134 was significantly associated with Body Mass Index (BMI). In the present study, the association of the rs347134 SNP with obesity and its interaction with dietary patterns (DPs) were explored in Han Chinese children. This cross-sectional study group included 1292 children, in whom obesity-related indicators were evaluated, the rs347134 SNP was genotyped by improved Multiple Ligase Detection Reaction (iMLDR), and the DPs were identified by principal component factor analysis. The GG genotype exhibited higher odds of general overweight/obesity (P = 0.038) and central obesity (P = 0.039) than AA + GA genotypes in boys. Four DPs of boys were identified: healthy balanced (HBDP), nuts and sweets-based (NSDP), animal food-based (AFDP), and wheaten and dairy-based (WDDP). Boys with the GG genotype were significantly more inclined to AFDP (P = 0.028) and had a shorter sleep duration (P = 0.031). Significant interactions were observed; boys with the GG genotype displayed a higher LDL in AFDP (P = 0.031) and higher FBG in NSDP (P = 0.038), respectively. Our findings indicate for the first time that the GG genotype of CMTM7 rs347134 is potentially a novel obesity risk factor for Han Chinese male children and is associated with dietary patterns more or less.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 479 ◽  
Author(s):  
Larkin ◽  
Lozada ◽  
Mason

In order to meet the goal of doubling wheat yield by 2050, breeders must work to improve breeding program efficiency while also implementing new and improved technologies in order to increase genetic gain. Genomic selection (GS) is an expansion of marker assisted selection which uses a statistical model to estimate all marker effects for an individual simultaneously to determine a genome estimated breeding value (GEBV). Breeders are thus able to select for performance based on GEBVs in the absence of phenotypic data. In wheat, genomic selection has been successfully implemented for a number of key traits including grain yield, grain quality and quantitative disease resistance, such as that for Fusarium head blight. For this review, we focused on the ways to modify genomic selection to maximize prediction accuracy, including prediction model selection, marker density, trait heritability, linkage disequilibrium, the relationship between training and validation sets, population structure, and training set optimization methods. Altogether, the effects of these different factors on the accuracy of predictions should be thoroughly considered for the successful implementation of GS strategies in wheat breeding programs.


Sign in / Sign up

Export Citation Format

Share Document