scholarly journals Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 444 ◽  
Author(s):  
Dong-Soon Im

Panax ginseng, also known as Korean ginseng, is a famous medicinal plant used for the treatment of many inflammatory diseases. Ginsenosides (ginseng saponins) are the main class of active constituents of ginseng. The anti-inflammatory effects of ginseng extracts were proven with purified ginsenosides, such as ginsenosides Rb1, Rg1, Rg3, and Rh2, as well as compound K. The negative regulation of pro-inflammatory cytokine expressions (TNF-α, IL-1β, and IL-6) and enzyme expressions (iNOS and COX-2) was found as the anti-inflammatory mechanism of ginsenosides in M1-polarized macrophages and microglia. Recently, another action mechanism emerged explaining the anti-inflammatory effect of ginseng. This is a pro-resolution of inflammation derived by M2-polarized macrophages. Direct and indirect evidence supports how several ginsenosides (ginsenoside Rg3, Rb1, and Rg1) induce the M2 polarization of macrophages and microglia, and how these M2-polarized cells contribute to the suppression of inflammation progression and promotion of inflammation resolution. In this review, the new action mechanism of ginseng anti-inflammation is summarized.

Author(s):  
Qiao-ling Fei ◽  
Xiao-yu Zhang ◽  
Rui-juan Qi ◽  
Yun-feng Huang ◽  
Yi-xin Han ◽  
...  

Abstract Background Canscora lucidissima (Levl. & Vaniot) Hand.-Mazz. (C. lucidissima), mainly distributed in southern China, has been shown to be effective in the treatment of inflammatory diseases. However, the underlying mechanism of its anti-inflammatory effect is not fully understood. Methods In this study, we investigated the anti-inflammatory mechanism of ethanol extract of C. lucidissima (Cl-EE) in lipopolysaccharide (LPS)-induced inflammatory models. ELISA, real-time PCR, Western blot and luciferase reporter assay were used for the experiments in vitro, and ICR mouse endotoxemia model was used for in vivo test. Results Our data showed that Cl-EE reduced the production of NO by down-regulating the mRNA and protein expression of inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 cells. Meanwhile, it potently decreased other proinflammatory mediators, such as TNF-α, IL-6, MCP-1 and IL-1β at the transcriptional and translational levels. Further study indicated that Cl-EE did not affect NF-κB signaling pathway but significantly suppressed the phosphorylation of ERK1/2, rather than JNK or p38. In a LPS-induced endotoxemia mouse model, a single intraperitoneal injection of Cl-EE (75–300 mg/kg) could lower circulatory TNF-α, IL-6 and MCP-1 levels. Conclusions Collectively, our results indicated that Cl-EE suppressed the phosphorylation level of ERK1/2 thus reducing the transcription and translation of inflammatory genes, thereby exerted anti-inflammatory activity. This study reveals the anti-inflammatory mechanism of C. lucidissima and may provide an effective treatment option for a variety of inflammatory diseases.


2014 ◽  
Vol 42 (01) ◽  
pp. 223-242 ◽  
Author(s):  
Jung-Chun Liao ◽  
Wen-Te Chang ◽  
Meng-Shiou Lee ◽  
Yung-Jia Chiu ◽  
Wei-Kai Chao ◽  
...  

The seeds of Cuscuta chinensis, Cuscutae Semen, are commonly used as a medicinal material for treating the aching and weakness of the loins and knees, tonifying the defects of the liver and the kidney, and treating the diarrhea due to hypofunction of the kidney and the spleen. Since aching and inflammation are highly correlated with such diseases, the aim of this study is to investigate the possible antinociceptive and anti-inflammatory mechanisms of the seeds of C. chinensis. The antinociceptive effect of the seeds of C. chinensis was evaluated via the acetic acid-induced writhing response and formalin-induced paw licking methods. The anti-inflammatory effect was evaluated via the λ-carrageenan induced mouse paw edema method. The results found that 100 and 500 mg/kg of the methanol extract of the seeds of C. chinensis( CCMeOH) significantly decreased (p < 0.01 and p < 0.001, respectively) the writhing response in the acetic acid assay. Additionally, 20–500 mg/kg of CCMeOHsignificantly decreased licking time at the early (20 and 100 mg/kg, p < 0.001) and late phases (100 mg/kg, p < 0.01; 500 mg/kg, p < 0.001) of the formalin test, respectively. Furthermore, CCMeOH(100 and 500 mg/kg) significantly decreased (p < 0.01 and p < 0.001, respectively) edema paw volume four hours after λ-carrageenan had been injected. The results in the following study also revealed that the anti-inflammatory mechanism of CCMeOHmay be due to declined levels of NO and MDA in the edema paw by increasing the activities of SOD, GPx and GRd in the liver. In addition, CCMeOHalso decreased IL-1β, IL-6, NF-κB, TNF-α, and COX-2 levels. This is the first study to demonstrate the possible mechanisms for the antinociceptive and anti-inflammatory effects of CCMeOHin vivo. Thus, it provides evidence for the treatment of Cuscutae Semen in inflammatory diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chi-Ren Liao ◽  
Chun-Pin Kao ◽  
Wen-Huang Peng ◽  
Yuan-Shiun Chang ◽  
Shang-Chih Lai ◽  
...  

This study investigated possible analgesic and anti-inflammatory mechanisms of the methanol extract ofFicus pumila(FPMeOH). Analgesic effects were evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The results showedFPMeOHdecreased writhing response in the acetic acid assay and licking time in the formalin test. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathological analyses.FPMeOHsignificantly decreased the volume of paw edema induced by λ-carrageenan. Histopathologically,FPMeOHabated the level of tissue destruction and swelling of the edema paws. This study indicated anti-inflammatory mechanism ofFPMeOHmay be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally,FPMeOHalso decreased the level of inflammatory mediators such as IL-1β, TNF-α, and COX-2. HPLC fingerprint was established and the contents of three active ingredients, rutin, luteolin, and apigenin, were quantitatively determined. This study provided evidence for the classical treatment ofFicus pumilain inflammatory diseases.


2021 ◽  
pp. 1-17
Author(s):  
Cong Phi Dang ◽  
Jiraphorn Issara-Amphorn ◽  
Awirut Charoensappakit ◽  
Kanyarat Udompornpitak ◽  
Thansita Bhunyakarnjanarat ◽  
...  

Controlof immune responses through the immunometabolism interference is interesting for sepsis treatment. Then, expression of immunometabolism-associated genes and BAM15, a mitochondrial uncoupling agent, was explored in a proinflammatory model using lipopolysaccharide (LPS) injection. Accordingly, the decreased expression of mitochondrial uncoupling proteins was demonstrated by transcriptomic analysis on metabolism-associated genes in macrophages (RAW246.7) and by polymerase chain reaction in LPS-stimulated RAW246.7 and hepatocytes (Hepa 1–6). Pretreatment with BAM15 at 24 h prior to LPS in macrophages attenuated supernatant inflammatory cytokines (IL-6, TNF-α, and IL-10), downregulated genes of proinflammatory M1 polarization (iNOS and IL-1β), upregulated anti-inflammatory M2 polarization (Arg1 and FIZZ), and decreased cell energy status (extracellular flux analysis and ATP production). Likewise, BAM15 decreased expression of proinflammatory genes (IL-6, TNF-α, IL-10, and iNOS) and reduced cell energy in hepatocytes. In LPS-administered mice, BAM15 attenuated serum cytokines, organ injury (liver enzymes and serum creatinine), and tissue cytokines (livers and kidneys), in part, through the enhanced phosphorylated αAMPK, a sensor of ATP depletion with anti-inflammatory property, in the liver, and reduced inflammatory monocytes/macrophages (Ly6C +ve, CD11b +ve) in the liver as detected by Western blot and flow cytometry, respectively. In conclusion, a proof of concept for inflammation attenuation of BAM15 through metabolic interference-induced anti-inflammation on macrophages and hepatocytes was demonstrated as a new strategy of anti-inflammation in sepsis.


2011 ◽  
Vol 39 (05) ◽  
pp. 943-956 ◽  
Author(s):  
Jen-Chieh Tsai ◽  
Wen-Huang Peng ◽  
Tai-Hui Chiu ◽  
Shang-Chih Lai ◽  
Chao-Ying Lee

The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Keisa W Mathis

Systemic lupus erythematosus (SLE) is an autoimmune disorder with prevalent hypertension. Previous studies using a genetic mouse model of SLE (NZBWF1) suggest chronic inflammation is an important contributor to SLE hypertension. A novel neuroimmune pathway involving the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) suppresses splenic cytokine release and reduces systemic inflammation upon stimulation. To test whether activation of this ‘cholinergic anti-inflammatory pathway’ at the level of the α7nAChR attenuates the development of hypertension during SLE, female SLE and control (NZW) mice were infused with nicotine hydrogen tartrate salt (2 mg/kg/day, SC) or saline for 7 days. Nicotine-treated SLE mice had lower splenic protein expression of TNF-α and IL-6 (normalized to β-actin) relative to saline-treated SLE mice (1.09±0.06 vs. 1.37±0.06 and 0.36±0.04 vs. 0.55±0.10; all p<0.05), suggesting efficacy of the therapy. Mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to controls (140±4 vs. 114±2; p<0.001). Nicotine prevented the rise in MAP in SLE mice (129±4; p=0.022), but not controls (121±3). This protection from hypertension coincided with a 46±5% lower renal cortical TNF-α in nicotine-treated SLE mice compared to saline-treated SLE mice (0.39±0.04 vs. 0.73±0.18), which is important because it has been previously shown that renal TNF-α plays a mechanistic role in the development of hypertension during SLE. Because nicotine acts on both ganglionic and peripheral cholinergic receptors, in a subsequent study mice were administered the selective α7nAChR agonist, PNU-282987 (0.38 mg/kg/day, IP), or vehicle for 28 days. PNU-282987-treated SLE mice had lower splenic protein expression of TNF-α and IL-6 relative to saline-treated SLE mice (0.33±0.01 vs. 0.54±0.03 and 0.40±0.08 vs. 0.86±0.05; all p<0.05). MAP was increased in SLE mice compared to controls (138±2 vs. 122±5). PNU-282987 prevented the rise in MAP in SLE mice (128±4), but not controls (125±5). These data suggest the anti-inflammatory effects of cholinergic agonists may protect from SLE hypertension and that the cholinergic anti-inflammatory pathway may be an important target in hypertensive patients with chronic inflammatory diseases.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4564
Author(s):  
Louis P. Sandjo ◽  
Marcus V. P. dos Santos Nascimento ◽  
Milene de H. Moraes ◽  
Luiza Manaut Rodrigues ◽  
Eduardo M. Dalmarco ◽  
...  

Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zengjie Zheng ◽  
Hailong Jiang ◽  
Yan Huang ◽  
Jie Wang ◽  
Lei Qiu ◽  
...  

Abstract Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases.


2020 ◽  
pp. 61-66
Author(s):  
Adeniran Lateef Ariyo ◽  
Ashafa Anofi Omotayo Tom

Anti-inflammatory and in vitro cytotoxic effect of phenols of Hermannia geniculata (PoHG) on Vero and HepG2 cells was carried out using Soybean lipoxygenase and MTT assays. PoHG extract exhibited a commendable inhibition of 5-lipoxygenase enzyme with IC50 value of (150 ± 0.03) µg/mL which is similar to the IC50: (110± 0.01) µg/mL of the standard (indomethacin). However, the extract was non-toxic to Vero cells with LC50 value >1.00 mg/mL but highly toxic to HepG2 cells (LC50: 0.05 mg/mL). A decrease viability of HepG2 cells was observed with increase in the concentration of the extract. There was less than 5% viable HepG2 cells at PoHG concentration of 750 µg/mL. The selectivity index of (20.00 and 33.33) was recorded for PoHG extract and doxorubicin respectively. The anti-inflammatory activities of PoHG suggested that the phenols extract may be useful in the management of inflammatory diseases like artheriosclerosis, diabetes mellitus, rheumatoid arthritis and asthma. It is also safe for use while its antiproliferative activities can be exploited in search for anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document