scholarly journals Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zengjie Zheng ◽  
Hailong Jiang ◽  
Yan Huang ◽  
Jie Wang ◽  
Lei Qiu ◽  
...  

Abstract Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hee Seo ◽  
Hyunbin Seong ◽  
Ga Yun Kim ◽  
Yu Mi Jo ◽  
Seong Won Cheon ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. In this study, we developed an anti-inflammatory probiotic starter, Limosilactobacillus reuteri EFEL6901, for use in kimchi fermentation. The EFEL6901 strain was safe for use in foods and was stable under human gastrointestinal conditions. In in vitro experiments, EFEL6901 cells adhered well to colonic epithelial cells and decreased nitric oxide production in lipopolysaccharide-induced macrophages. In in vivo experiments, oral administration of EFEL6901 to DSS-induced colitis mice models significantly alleviated the observed colitis symptoms, prevented body weight loss, lowered the disease activity index score, and prevented colon length shortening. Analysis of these results indicated that EFEL6901 played a probiotic role by preventing the overproduction of pro-inflammatory cytokines, improving gut barrier function, and up-regulating the concentrations of short-chain fatty acids. In addition, EFEL6901 made a fast growth in a simulated kimchi juice and it synthesized similar amounts of metabolites in nabak-kimchi comparable to a commercial kimchi. This study demonstrates that EFEL6901 can be used as a suitable kimchi starter to promote gut health and product quality.


2018 ◽  
Vol 9 (2) ◽  
pp. 317-331 ◽  
Author(s):  
J. Alard ◽  
V. Peucelle ◽  
D. Boutillier ◽  
J. Breton ◽  
S. Kuylle ◽  
...  

Alterations in the gut microbiota composition play a key role in the development of chronic diseases such as inflammatory bowel disease (IBD). The potential use of probiotics therefore gained attention, although outcomes were sometimes conflicting and results largely strain-dependent. The present study aimed to identify new probiotic strains that have a high potential for the management of this type of pathologies. Strains were selected from a large collection by combining different in vitro and in vivo approaches, addressing both anti-inflammatory potential and ability to improve the gut barrier function. We identified six strains with an interesting anti-inflammatory profile on peripheral blood mononuclear cells and with the ability to restore the gut barrier using a gut permeability model based on Caco-2 cells sensitized with hydrogen peroxide. The in vivo evaluation in two 2,4,6-trinitrobenzene sulfonic acid-induced murine models of colitis highlighted that some of the strains exhibited beneficial activities against acute colitis while others improved chronic colitis. Bifidobacterium bifidum PI22, the strain that exhibited the most protective capacities against acute colitis was only slightly efficacious against chronic colitis, while Bifidobacterium lactis LA804 which was less efficacious in the acute model was the most protective against chronic colitis. Lactobacillus helveticus PI5 was not anti-inflammatory in vitro but the best in strengthening the epithelial barrier and as such able to significantly dampen murine acute colitis. Interestingly, Lactobacillus salivarius LA307 protected mice significantly against both types of colitis. This work provides crucial clues for selecting the best strains for more efficacious therapeutic approaches in the management of chronic inflammatory diseases. The strategy employed allowed us to identify four strains with different characteristics and a high potential for the management of inflammatory diseases, such as IBD.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mbiantcha Marius ◽  
Dawe Amadou ◽  
Atsamo Albert Donatien ◽  
Ateufack Gilbert ◽  
Yousseu Nana William ◽  
...  

Combretum fragrans (Combretaceae) is a Cameroonian medicinal plant containing various secondary metabolites and traditionally used for the treatment of several pathologies. Two cycloartane-type triterpenes, Combretin A and Combretin B, were isolated from this plant. This study was aimed at evaluating the anti-inflammatory, antioxidant, and anticolitis effects of these compounds. In vitro anti-inflammatory properties were evaluated by inhibition of cyclooxygenase, 5-lipoxygenase, and denaturation of the protein; antioxidant properties were assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), (2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) ABTS•+, capacity tests ferric reducing antioxidant (FRAP), and trapping nitric oxide. For in vivo analysis, we used the model of ulcerative colitis induced by Dextran Sulfate Sodium (DSS). Studies of the anti-inflammatory activity showed that Combretin A and Combretin B had maximal inhibitory activity on cyclooxygenase (71.92% and 89.59%), 5-lipoxygenase (76.68% and 91.21%), and protein denaturation (63.93% and 87.78%). Antioxidant activity on DPPH, ABTS•+, ferric reducing antioxidant capacity (FRAP), and nitric oxide scavenging showed that Combretin A and Combretin B showed good antioxidant activities. These compounds significantly reduced the signs of DSS-induced colitis in the treated animals by preventing the weight loss of the animals, by significantly reducing the disease activity index, improving the condition of the stool, preventing the reduction of the length of the colon, and preventing the degradation of the colon. This study revealed that Combretin A and Combretin B have anti-inflammatory, antioxidant, and curative properties against colitis experimentally induced by DSS in rats.


2021 ◽  
Vol 22 (10) ◽  
pp. 5358
Author(s):  
Katarzyna Tonecka ◽  
Agata Braniewska ◽  
Zofia Pilch ◽  
Zuzanna Sas ◽  
Marcin Skorzynski ◽  
...  

Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200−/− mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200−/− mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2068 ◽  
Author(s):  
Myoung-Sook Shin ◽  
Sang-Back Kim ◽  
Jaemin Lee ◽  
Han-Seok Choi ◽  
Jimin Park ◽  
...  

Aucklandia lappa DC., Terminalia chebula Retz and Zingiber officinale Roscoe have been traditionally used in east Asia to treat chronic diarrhea and abdominal pain. This study aimed to evaluated the anti-inflammatory activity of KM1608, which is composed of three natural herbs in a mouse model of dextran sodium sulfate (DSS)-induced ulcerative colitis. The anti-inflammatory activity and underlying mechanism were assessed in vitro using LPS-treated RAW264.7 cells. The in vivo effect of KM1608 on DSS-induced colitis was examined after oral administration in mice. KM1608 significantly inhibited the inflammatory mediators such as nitric oxide, interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor (TNF)-α in LPS-treated RAW264.7 cells. The inhibitory effect of KM1608 was attributed to the reduction of Akt phosphorylation in the LPS-treated cells. In the mouse model, oral administration of KM1608 significantly improved DSS-induced colitis symptoms, such as disease activity index (DAI), colon length, and colon weight, as well as suppressed the expression of IL-6, TNF-α, and myeloperoxidase (MPO) in the DSS-induced colitis tissues. Taken together, KM1608 improved colitis through the regulation of inflammatory responses, suggesting that KM1608 has potential therapeutic use in the treatment of inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2017 ◽  
Vol 43 (5) ◽  
pp. 2074-2087 ◽  
Author(s):  
Liling Yang ◽  
Xiangjun Zhou ◽  
Weijuan Huang ◽  
Qin Fang ◽  
Jianlan Hu ◽  
...  

Background/Aims: Forsythia suspensa Vahl. (Oleaceae) fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN), the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF-α expression. Conclusion: This study provides a rationale for the clinical application of PHN as an anti-inflammatory agent.


Sign in / Sign up

Export Citation Format

Share Document