scholarly journals Targeting TLR4 with ApTOLL Improves Heart Function in Response to Coronary Ischemia Reperfusion in Pigs Undergoing Acute Myocardial Infarction

Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1167 ◽  
Author(s):  
Rafael Ramirez-Carracedo ◽  
Laura Tesoro ◽  
Ignacio Hernandez ◽  
Javier Diez-Mata ◽  
David Piñeiro ◽  
...  

Toll-like receptor 4 (TLR4) contributes to the pathogenesis of coronary ischemia/reperfusion (IR). To test whether the new TLR4 antagonist, ApTOLL, may prevent coronary IR damage, we administered 0.078 mg/kg ApTOLL or Placebo in pigs subjected to IR, analyzing the levels of cardiac troponins, matrix metalloproteinases, pro-, and anti-inflammatory cytokines, heart function, and tissue integrity over a period of 7 days after IR. Our results show that ApTOLL reduced cardiac troponin-1 24 h after administration, improving heart function, as detected by a significant recovery of the left ventricle ejection fraction (LVEF) and the shortening fraction (FS) cardiac parameters. The extension of necrotic and fibrotic areas was also reduced, as detected by Evans blue/2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin/Eosine, and Masson Trichrome staining of heart sections, together with a significant reduction in the expression of the extracellular matrix-degrading, matrix metalloproteinase 9. Finally, the expression of the following cytokines, CCL1, CCL2, MIP1-A-B, CCL5, CD40L, C5/C5A, CXCL1, CXCL10, CXCL11, CXCL12, G-CSF, GM-CSF, ICAM-1, INF-g, IL1-a, ILI-b, IL-1Ra, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, IL16, IL17-A, IL17- E, IL18, IL21, IL27, IL32, MIF, SERPIN-E1, TNF-a, and TREM-1, were also assayed, detecting a pronounced decrease of pro-inflammatory cytokines after 7 days of treatment with ApTOLL. Altogether, our results show that ApTOLL is a promising new tool for the treatment of acute myocardial infarction (AMI).

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Icia Santos-Zas ◽  
Jeremie Lemarié ◽  
Ivana Zlatanova ◽  
Marine Cachanado ◽  
Jean-Christophe Seghezzi ◽  
...  

AbstractAcute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


2018 ◽  
Vol 27 (8) ◽  
pp. 1256-1268 ◽  
Author(s):  
Tianyu Li ◽  
Yunshu Su ◽  
Xiongli Yu ◽  
Durgahee S.A. Mouniir ◽  
Jackson Ferdinand Masau ◽  
...  

Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Yin ◽  
Yang Zheng ◽  
Xujie Zhai ◽  
Xin Zhao ◽  
Lu Cai

Ischemic preconditioning (IPC) or postconditioning (Ipost) is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2–6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- and Ipost-mediated myocardial protection is predominantly mediated by stimulating PI3K/Akt and associated GSK-3β pathway while diabetes-mediated pathogenic effects are found to be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore, this review briefly introduced the general features of IPC- and Ipost-mediated myocardial protection and the general pathogenic effects of diabetes on the myocardium. We have collected experimental evidence that indicates the diabetic inhibition of IPC- and Ipost-mediated myocardial protection. Increasing evidence implies that diabetic inhibition of IPC- and Ipost-mediated myocardial protection may be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore any strategy to activate PI3K/Akt and associated GSK-3β pathway to release the diabetic inhibition of both IPC and Ipost-mediated myocardial protection may provide the protective effect against ischemia/reperfusion injuries.


2017 ◽  
Vol 24 (3) ◽  
pp. 154-161 ◽  
Author(s):  
Laurin Imholz ◽  
Rebecca E. Meister-Langraf ◽  
Mary Princip ◽  
Michaela Fux ◽  
Ulrich Schnyder ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenkai Liao ◽  
Li Xu ◽  
Yuxia Pan ◽  
Jie Wei ◽  
Peijia Wang ◽  
...  

Abstract Objectives Atrial remodeling is the main developmental cause of atrial arrhythmias (AA), which may induce atrial fibrillation, atrial flutter, atrial tachycardia, and frequent premature atrial beats in acute myocardial infarction (AMI) patients. Thrombospondin-1 (TSP-1) has been shown to play an important role in inflammatory and fibrotic processes, but its role in atrial arrhythmias is not well described. The purpose of this study was to investigate the role of TSP-1 in AMI patients with atrial arrhythmias. Methods A total of 219 patients with AMI who underwent percutaneous coronary intervention and with no previous arrhythmias were included. TSP-1 were analyzed in plasma samples. Patients were classified into 2 groups, namely, with and without AA during the acute phase of MI. Continuous electrocardiographic monitoring was used for AA diagnosis in hospital. Results Twenty-four patients developed AA. Patients with AA had higher TSP-1 levels (29.01 ± 25.87 μg/mL vs 18.36 ± 10.89 μg/mL, p < 0.001) than those without AA. AA patients also tended to be elderly (65.25 ± 9.98 years vs 57.47 ± 10.78 years, p < 0.001), had higher Hs-CRP (39.74 ± 43.50 mg/L vs 12.22 ± 19.25 mg/L, p < 0.001) and worse heart function. TSP-1 (OR 1.033; 95% CI 1.003–1.065, p = 0.034), Hs-CRP (OR 1.023; 95% CI 1.006–1.041, p = 0.008), age (OR 1.067; 95% CI 1.004–1.135, p = 0.038) and LVDd (OR 1.142; 95% CI 1.018–1.282, p = 0.024) emerged as independent risk factors for AA in AMI patients. Conclusion TSP-1 is a potential novel indicator of atrial arrhythmias during AMI. Graphical abstract


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaowei Niu ◽  
Jingjing Zhang ◽  
Jinrong Ni ◽  
Runqing Wang ◽  
Weiqiang Zhang ◽  
...  

Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Lichan Tao ◽  
Yihua Bei ◽  
Haifeng Zhang ◽  
Yanli Zhou ◽  
Jingfa Jiang ◽  
...  

Acute myocardial infarction (AMI) represents a major cause of morbidity and mortality worldwide. Exercise has been proved to reduce myocardial ischemia-reperfusion (I/R) injury. However it remains unclear whether, and (if so) how, exercise could protect against AMI. Methods: Mice were trained using a 3-week swimming protocol, and then subjected to left coronary artery (LCA) ligation, and finally sacrificed 24 h after AMI. Results: Exercise training reduces myocardial infarct size and abolishes AMI-induced autophagy and apoptosis. MI leads to a shift from fatty acid to glucose metabolism in the myocardium with a downregulation of PPAR-α and PPAR-γ. Also, AMI induces an adaptive increase of mitochondrial DNA replication and transcription in the acute phase of MI, accompanied by an activation of PGC-1α signaling. Exercise abolishes the derangement of myocardial glucose and lipid metabolism and further enhances the adaptive increase of mitochondrial biogenesis. Conclusion: Exercise training protects against AMI-induced acute cardiac injury through improving myocardial energy metabolism and enhancing the early adaptive change of mitochondrial biogenesis.


Sign in / Sign up

Export Citation Format

Share Document