scholarly journals In Vitro Differentiation of Human Placenta-Derived Multipotent Cells into Schwann-Like Cells

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1657
Author(s):  
Chung-Hau Juan ◽  
Mei-Hsiu Chen ◽  
Feng-Hui Lin ◽  
Chih-Shung Wong ◽  
Chih-Cheng Chien ◽  
...  

Human placenta-derived multipotent stem cells (PDMCs) resembling embryonic stem cells can differentiate into three germ layer cells, including ectodermal lineage cells, such as neurons, astrocytes, and oligodendrocytes. The favorable characteristics of noninvasive cell harvesting include fewer ethical, religious, and legal considerations as well as accessible and limitless supply. Thus, PDMCs are attractive for cell-based therapy. The Schwann cell (SC) is the most common cell type used for tissue engineering such as nerve regeneration. However, the differentiation potential of human PDMCs into SCs has not been demonstrated until now. In this study, we evaluated the potential of PDMCs to differentiate into SC-like cells in a differentiation medium. After induction, PDMCs not only exhibited typical SC spindle-shaped morphology but also expressed SC markers, including S100, GFAP, p75, MBP, and Sox 10, as revealed by immunocytochemistry. Moreover, a reverse transcription-quantitative polymerase chain reaction analysis revealed the elevated gene expression of S100, GFAP, p75, MBP, Sox-10, and Krox-20 after SC induction. A neuroblastoma cell line, SH-SY5Y, was cultured in the conditioned medium (CM) collected from PDMC-differentiated SCs. The growth rate of the SH-SY5Y increased in the CM, indicating the function of PDMC-induced SCs. In conclusion, human PDMCs can be differentiated into SC-like cells and thus are an attractive alternative to SCs for cell-based therapy in the future.

2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2015 ◽  
Vol 35 (6) ◽  
pp. 2299-2308 ◽  
Author(s):  
Jiong Yu ◽  
Xiaoru Su ◽  
Chengxing Zhu ◽  
Qiaoling Pan ◽  
Jinfeng Yang ◽  
...  

Background: Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. Methods: The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP+ hPMSCs. GFP+ hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP+ hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. Results: GFP+ hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP+ hPMSCs showed typical hepatic phenotypes. Conclusions: GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP+ hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 771-784 ◽  
Author(s):  
Fariborz Izadyar ◽  
Francis Pau ◽  
Joel Marh ◽  
Natalia Slepko ◽  
Tracy Wang ◽  
...  

Spermatogonial stem cells (SSCs) maintain spermatogenesis by self-renewal and generation of spermatogonia committed to differentiation. Under certain in vitro conditions, SSCs from both neonatal and adult mouse testis can reportedly generate multipotent germ cell (mGC) lines that have characteristics and differentiation potential similar to embryonic stem (ES) cells. However, mGCs generated in different laboratories showed different germ cell characteristics, i.e., some retain their SSC properties and some have lost them completely. This raises an important question: whether mGC lines have been generated from different subpopulations in the mouse testes. To unambiguously identify and track germ line stem cells, we utilized a transgenic mouse model expressing green fluorescence protein under the control of a germ cell-specific Pou5f1 (Oct4) promoter. We found two distinct populations among the germ line stem cells with regard to their expression of transcription factor Pou5f1 and c-Kit receptor. Only the POU5F1+/c-Kit+ subset of mouse germ line stem cells, when isolated from either neonatal or adult testes and cultured in a complex mixture of growth factors, generates cell lines that express pluripotent ES markers, i.e., Pou5f1, Nanog, Sox2, Rex1, Dppa5, SSEA-1, and alkaline phosphatase, exhibit high telomerase activity, and differentiate into multiple lineages, including beating cardiomyocytes, neural cells, and chondrocytes. These data clearly show the existence of two distinct populations within germ line stem cells: one destined to become SSC and the other with the ability to generate multipotent cell lines with some pluripotent characteristics. These findings raise interesting questions about the relativity of pluripotency and the plasticity of germ line stem cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3568-3568
Author(s):  
Mattias Magnusson ◽  
Melissa Romero ◽  
Sacha Prashad ◽  
Ben Van Handel ◽  
Suvi Aivio ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) ex vivo has been difficult due to limited understanding of their growth requirements and the molecular complexity of their natural microenvironments. To mimic the niches in which human HSCs normally develop and expand during ontogeny, we have derived two unique types of stromal niche cells from the first trimester human placenta and the fetal liver. These lines either support maintenance of multipotential progenitors in culture, or promote differentiation into macrophages. Impressively, the supportive lines facilitate over 50,000-fold expansion of the most immature human HSCs/progenitors (CD34+CD38-Thy1+) during 8-week culture supplemented with minimal cytokines FLT3L, SCF and TPO, whereas the cells cultured on non-supportive stroma or without stroma under the same conditions differentiated within 2 weeks. As the supportive stroma lines also facilitate differentiation of human hematopoietic progenitors into myeloid, erythroid and B-lymphoid lineages, we were able to show that the expanded progenitors preserved full multipotentiality during long-term culture ex vivo. Furthermore, our findings indicate that the supportive stroma lines also direct differentiation of human embryonic stem cells (hESC) into hematopoietic progenitor cells (CD45+CD34+) that generate multiple types of myeloerythroid colonies. These data imply that the unique supportive niche cells can both support hematopoietic specification and sustain a multilineage hematopoietic hierarchy in culture over several weeks. Strikingly, the supportive effect from the unique stromal cells was dominant over the differentiation effect from the non-supportive lines. Even supernatant from the supportive lines was able to partially protect the progenitors that were cultured on the non-supportive lines, whereas mixing of the two types of stroma resulted in sustained preservation of the multipotential progenitors. These results indicate that the supportive stroma cells possess both secreted and surface bound molecules that protect multipotentiality of HSCs. Global gene expression analysis revealed that the supportive stroma lines from both the placenta and the fetal liver were almost identical (r=0.99) and very different from the non-supportive lines that promote differentiation (r=0.34), implying that they represent two distinct niche cell types. Interestingly, the non-supportive lines express known mesenchymal markers such as (CD73, CD44 and CD166), whereas the identity of the supportive cells is less obvious. In summary, we have identified unique human stromal niche cells that may be critical components of the HSC niches in the placenta and the fetal liver. Molecular characterization of these stroma lines may enable us to define key mechanisms that govern the multipotentiality of HSCs.


2008 ◽  
Vol 36 (3) ◽  
pp. 272-275 ◽  
Author(s):  
Henrik Semb

Using the Edmonton protocol, a number of patients with Type 1 diabetes mellitus have remained insulin-independent for prolonged periods of time. In spite of this success, transplantation of islets from cadaver donors will remain a therapy for very few patients owing to a lack of donors. Thus, if cell therapy should be widely available, it will require an unlimited source of cells to serve as a ‘biological’ insulin pump. At this time, the development of β-cells from hESCs (human embryonic stem cells) has emerged as the most attractive alternative. It is envisioned that ultimate success of an in vitro approach to programme hESCs into β-cells will depend on the ability, at least to a certain degree, to sequentially reproduce the individual steps that characterizes normal β-cell ontogenesis during fetal pancreatic development, including definitive endoderm from which all gastrointestinal organs, including the pancreas, originate. In the present article, differentiation of hESCs into putative definitive endodermal cell types is reviewed.


Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3254-3262 ◽  
Author(s):  
Massimo Giuliani ◽  
Noufissa Oudrhiri ◽  
Zaeem M. Noman ◽  
Amelia Vernochet ◽  
Salem Chouaib ◽  
...  

Abstract A major issue in immunosuppressive biotherapy is the use of mesenchymal stem cells (MSCs) that harbor regulatory capacity. However, currently used bone marrow-derived MSCs (BM-MSCs) are short-lived and cannot assure long lasting immunoregulatory function both in vitro and in vivo. Consequently, we have generated MSCs from human induced pluripotent stem (IPS-MSCs) cells that share similar properties with embryonic stem cells (ES-MSCs). Herein, we compared the immunoregulatory properties of ES/IPS-MSCs with those of BM-MSCs and showed, for the first time, that IPS-derived MSCs display remarkable inhibition of NK-cell proliferation and cytolytic function in a similar way to ES-MSCs. Both MSCs disrupt NK-cell cytolytic machinery in the same fashion that BM-MSCs, by down-regulating the expression of different activation markers and ERK1/2 signaling, leading to an impairment to form immunologic synapses with target cells and, therefore, secretion of cytotoxic granules. In addition, they are more resistant than adult BM-MSCs to preactivated NK cells. IPS-MSCs could represent an attractive alternative source of immunoregulatory cells, and their capacity to impair NK-cell cytotoxicity constitutes a complex mechanism to prevent allograft rejection.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243769
Author(s):  
Florian Dubois ◽  
Anne Gaignerie ◽  
Léa Flippe ◽  
Jean-Marie Heslan ◽  
Laurent Tesson ◽  
...  

The success of inducing human pluripotent stem cells (hIPSC) offers new opportunities for cell-based therapy. Since B cells exert roles as effector and as regulator of immune responses in different clinical settings, we were interested in generating B cells from hIPSC. We differentiated human embryonic stem cells (hESC) and hIPSC into B cells onto OP9 and MS-5 stromal cells successively. We overcame issues in generating CD34+CD43+ hematopoietic progenitors with appropriate cytokine conditions and emphasized the difficulties to generate proper hematopoietic progenitors. We highlight CD31intCD45int phenotype as a possible marker of hematopoietic progenitors suitable for B cell differentiation. Defining precisely proper lymphoid progenitors will improve the study of their lineage commitment and the signals needed during the in vitro process.


Author(s):  
Chih-Yi Yang ◽  
Rita Jui-Hsien Lu ◽  
Ming-Kang Lee ◽  
Felix Shih-Hsian Hsiao ◽  
Ya-Ping Yen ◽  
...  

Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.


2021 ◽  
Vol 14 ◽  
Author(s):  
Michael Telias ◽  
Dalit Ben-Yosef

The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.


Sign in / Sign up

Export Citation Format

Share Document